l-dopa impairs learning, but spares generalization, in Parkinson's disease

[1]  H. Kowarzyk Structure and Function. , 1910, Nature.

[2]  M. Hoehn,et al.  Parkinsonism , 1967, Neurology.

[3]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[4]  D L Schacter,et al.  Priming of Old and New Knowledge in Amnesic Patients and Normal Subjects a , 1985, Annals of the New York Academy of Sciences.

[5]  C. Marsden,et al.  'Frontal' cognitive function in patients with Parkinson's disease 'on' and 'off' levodopa. , 1988, Brain : a journal of neurology.

[6]  H Eichenbaum,et al.  Further studies of hippocampal representation during odor discrimination learning. , 1989, Behavioral neuroscience.

[7]  C. Marsden,et al.  The performance on learning tasks of patients in the early stages of Parkinson's disease , 1989, Neuropsychologia.

[8]  M. Moscovitch,et al.  Memory for temporal order and conditional associative-learning in patients with Parkinson's disease , 1990, Neuropsychologia.

[9]  C. Marsden,et al.  Fronto-striatal cognitive deficits at different stages of Parkinson's disease. , 1992, Brain : a journal of neurology.

[10]  T. Robbins,et al.  Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. , 1993, Brain : a journal of neurology.

[11]  M. Gluck,et al.  Hippocampal mediation of stimulus representation: A computational theory , 1993, Hippocampus.

[12]  D. Schacter The cognitive neuroscience of memory , 1995, Journal of the Neurological Sciences.

[13]  T. Robbins,et al.  Refining the Taxonomy of Memory , 1996, Science.

[14]  L. Squire,et al.  Structure and function of declarative and nondeclarative memory systems. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Jennifer A. Mangels,et al.  A Neostriatal Habit Learning System in Humans , 1996, Science.

[16]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[17]  J. Gabrieli Cognitive neuroscience of human memory. , 1998, Annual review of psychology.

[18]  T. Suda,et al.  Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. , 1999, Neuroreport.

[19]  田中 洋康 Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats , 1999 .

[20]  E. Abercrombie,et al.  Role of High‐Affinity Dopamine Uptake and Impulse Activity in the Appearance of Extracellular Dopamine in Striatum After Administration of Exogenous L‐DOPA , 1999, Journal of neurochemistry.

[21]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[22]  T. Robbins,et al.  Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication , 2000, Neuropsychologia.

[23]  J. Roulin,et al.  Working memory functioning in medicated Parkinson's disease patients and the effect of withdrawal of dopaminergic medication. , 2000, Neuropsychology.

[24]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[25]  L. Nystrom,et al.  Tracking the hemodynamic responses to reward and punishment in the striatum. , 2000, Journal of neurophysiology.

[26]  大和 博 Fluoxetine reduces L-DOPA-derived extracellular DA in the 6-OHDA-lesioned rat striatum , 2001 .

[27]  T. Robbins,et al.  Mechanisms of cognitive set flexibility in Parkinson's disease. , 2001, Brain : a journal of neurology.

[28]  M. Gluck,et al.  Interactive memory systems in the human brain , 2001, Nature.

[29]  M. Matsunaga,et al.  Fluoxetine reduces l-DOPA-derived extracellular DA in the 6-OHDA-lesioned rat striatum , 2001, Neuroreport.

[30]  Brian Knutson,et al.  Dissociation of reward anticipation and outcome with event-related fMRI , 2001, Neuroreport.

[31]  T. Robbins,et al.  Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. , 2001, Cerebral cortex.

[32]  T. Goldberg,et al.  Dopaminergic modulation of cortical function in patients with Parkinson's disease , 2002, Annals of neurology.

[33]  Mony J de Leon,et al.  Hippocampal Atrophy Disrupts Transfer Generalization in Nondemented Elderly , 2002, Journal of geriatric psychiatry and neurology.

[34]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[35]  H. Eichenbaum The Cognitive Neuroscience of Memory , 2002 .

[36]  M. Gluck,et al.  Dissociating Hippocampal versus Basal Ganglia Contributions to Learning and Transfer , 2003, Journal of Cognitive Neuroscience.

[37]  M. Gluck,et al.  Human midbrain sensitivity to cognitive feedback and uncertainty during classification learning. , 2004, Journal of neurophysiology.

[38]  M. Delgado,et al.  Motivation-dependent responses in the human caudate nucleus. , 2004, Cerebral cortex.

[39]  M. Gluck,et al.  Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. , 2004, Brain : a journal of neurology.

[40]  Michael J. Frank,et al.  By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism , 2004, Science.

[41]  K. Doya,et al.  A Neural Correlate of Reward-Based Behavioral Learning in Caudate Nucleus: A Functional Magnetic Resonance Imaging Study of a Stochastic Decision Task , 2004, The Journal of Neuroscience.

[42]  Alison R Preston,et al.  Hippocampal contribution to the novel use of relational information in declarative memory , 2004, Hippocampus.

[43]  M. Gluck,et al.  Role of the basal ganglia in category learning: how do patients with Parkinson's disease learn? , 2004, Behavioral neuroscience.

[44]  C. Marsden,et al.  l-Dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction , 2005, Psychopharmacology.

[45]  S. Quartz,et al.  Getting to Know You: Reputation and Trust in a Two-Person Economic Exchange , 2005, Science.

[46]  M. Gluck,et al.  The role of dopamine in cognitive sequence learning: evidence from Parkinson’s disease , 2005, Behavioural Brain Research.

[47]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[48]  S. Inati,et al.  An fMRI study of reward-related probability learning , 2005, NeuroImage.