Design of combinational logic circuits through an evolutionary multiobjective optimization approach

In this paper, we propose a population-based evolutionary multiobjective optimization approach to design combinational circuits. Our results indicate that the proposed approach can significantly reduce the computational effort required by a genetic algorithm (GA) to design circuits at a gate level while generating equivalent or even better solutions (i.e., circuits with a lower number of gates) than a human designer or even other GAs. Several examples taken from the literature are used to evaluate the performance of the proposed approach.

[1]  Paul J. Layzell,et al.  Explorations in design space: unconventional electronics design through artificial evolution , 1999, IEEE Trans. Evol. Comput..

[2]  E. W. Veitch,et al.  A chart method for simplifying truth functions , 1952, ACM '52.

[3]  Nripendra N. Biswas,et al.  Minimization of Boolean Functions , 1971, IEEE Transactions on Computers.

[4]  Julian Francis Miller,et al.  Principles in the Evolutionary Design of Digital Circuits—Part II , 2000, Genetic Programming and Evolvable Machines.

[5]  Jim Tørresen,et al.  A Divide-and-Conquer Approach to Evolvable Hardware , 1998, ICES.

[6]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[7]  E. McCluskey Minimization of Boolean functions , 1956 .

[8]  Patrick D. Surry,et al.  A Multi-objective Approach to Constrained Optimisation of Gas Supply Networks: the COMOGA Method , 1995, Evolutionary Computing, AISB Workshop.

[9]  Tatiana Kalganova,et al.  Some Aspects of an Evolvable Hardware Approach for Multiple-Valued Combinational Circuit Design , 1998, ICES.

[10]  A. H. Aguirre,et al.  AUTOMATED DESIGN OF COMBINATIONAL LOGIC CIRCUITS USING GENETIC ALGORITHMS , 2022 .

[11]  Ian C. Parmee,et al.  Preliminary airframe design using co-evolutionary multiobjective genetic algorithms , 1999 .

[12]  Peter Thomson,et al.  Circuit Evolution and Visualisation , 2000, ICES.

[13]  Julian F. Miller Chapter 18 – The Genetic Algorithm as a Discovery Engine: Strange Circuits and New Principles , 2002 .

[14]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[15]  Tatiana Kalganova,et al.  Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[16]  John Rachlin,et al.  Enhancing the decision-making process for paper mill schedulers , 1999 .

[17]  M. Karnaugh The map method for synthesis of combinational logic circuits , 1953, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[18]  Willard Van Orman Quine,et al.  A Way to Simplify Truth Functions , 1955 .

[19]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[20]  Robert K. Brayton,et al.  MIS: A Multiple-Level Logic Optimization System , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Jeffrey Horn,et al.  Multicriterion decision making , 1997 .

[22]  Tsutomu Sasao,et al.  Logic Synthesis and Optimization , 1997 .

[23]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[24]  Carlos A. Coello Coello,et al.  Extraction of Design Patterns from Evolutionary Algorithms Using Case-Based Reasoning , 2001, ICES.

[25]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[26]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[27]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[30]  Sushil J. Louis,et al.  Pareto OptimalityGA-Easiness and Deception (Extended Abstract) , 1993, International Conference on Genetic Algorithms.

[31]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[32]  Andrzej Ameljańczyk,et al.  Multicriteria Optimization in Engineering Design , 1994 .

[33]  Alan D. Christiansen,et al.  An empirical study of evolutionary techniques for multiobjective optimization in engineering design , 1996 .

[34]  R.W. Hyndman,et al.  Digital networks , 1977, Proceedings of the IEEE.

[35]  José L. Verdegay,et al.  Evolutionary Techniques for Constrained Optimization Problems , 1999 .

[36]  Andrzej Osyczka,et al.  7 – Multicriteria optimization for engineering design , 1985 .

[37]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[38]  Sushil J. Louis,et al.  Genetic algorithms as a computational tool for design , 1993 .