Bayesian electromagnetic spatio-temporal imaging of extended sources with Markov Random Field and temporal basis expansion

Estimating the locations and spatial extents of brain sources poses a long-standing challenge for electroencephalography and magnetoencephalography (E/MEG) source imaging. In the present work, a novel source imaging method, Bayesian Electromagnetic Spatio-Temporal Imaging of Extended Sources (BESTIES), which is built upon a Bayesian framework that determines the spatio-temporal smoothness of source activities in a fully data-driven fashion, is proposed to address this challenge. In particular, a Markov Random Field (MRF), which can precisely capture local cortical interactions, is employed to characterize the spatial smoothness of source activities, the temporal dynamics of which are modeled by a set of temporal basis functions (TBFs). Crucially, all of the unknowns in the MRF and TBF models are learned from the data. To accomplish model inference efficiently on high-resolution source spaces, a scalable algorithm is developed to approximate the posterior distribution of the source activities, which is based on the variational Bayesian inference and convex analysis. The performance of BESTIES is assessed using both simulated and actual human E/MEG data. Compared with L2-norm constrained methods, BESTIES is superior in reconstructing extended sources with less spatial diffusion and less localization error. By virtue of the MRF, BESTIES also overcomes the drawback of over-focal estimates in sparse constrained methods.

[1]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[2]  D. Contreras,et al.  Spatiotemporal Analysis of Local Field Potentials and Unit Discharges in Cat Cerebral Cortex during Natural Wake and Sleep States , 1999, The Journal of Neuroscience.

[3]  Lei Ding,et al.  Sparse source imaging in electroencephalography with accurate field modeling , 2008, Human brain mapping.

[4]  Jens Haueisen,et al.  Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations , 2013, NeuroImage.

[5]  R. Henson,et al.  Electrophysiological and haemodynamic correlates of face perception, recognition and priming. , 2003, Cerebral cortex.

[6]  Anders M. Dale,et al.  Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction , 2002 .

[7]  Toshimitsu Musha,et al.  Electric Dipole Tracing in the Brain by Means of the Boundary Element Method and Its Accuracy , 1987, IEEE Transactions on Biomedical Engineering.

[8]  Srikantan S. Nagarajan,et al.  Reconstructing MEG Sources with Unknown Correlations , 2003, NIPS.

[9]  Jen-Chuen Hsieh,et al.  Spatially sparse source cluster modeling by compressive neuromagnetic tomography , 2010, NeuroImage.

[10]  Jean Gotman,et al.  Evaluation of EEG localization methods using realistic simulations of interictal spikes , 2006, NeuroImage.

[11]  J. Ebersole,et al.  Intracranial EEG Substrates of Scalp EEG Interictal Spikes , 2005, Epilepsia.

[12]  Dimitri Van De Ville,et al.  EEG source imaging of brain states using spatiotemporal regression , 2014, NeuroImage.

[13]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[14]  A. Engel,et al.  Intrinsic Coupling Modes: Multiscale Interactions in Ongoing Brain Activity , 2013, Neuron.

[15]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[16]  Emery N. Brown,et al.  A spatiotemporal dynamic distributed solution to the MEG inverse problem , 2011, NeuroImage.

[17]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[18]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[19]  Thomas R. Knösche,et al.  Prior knowledge on cortex organization in the reconstruction of source current densities from EEG , 2013, NeuroImage.

[20]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[21]  Lei Ding,et al.  Reconstructing spatially extended brain sources via enforcing multiple transform sparseness , 2014, NeuroImage.

[22]  Nelson J. Trujillo-Barreto,et al.  Bayesian M/EEG source reconstruction with spatio-temporal priors , 2008, NeuroImage.

[23]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[24]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[25]  Lars Kai Hansen,et al.  Probabilistic M/EEG source imaging from sparse spatio-temporal event structure , 2012, NIPS 2012.

[26]  Christophe Grova,et al.  MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches , 2013, PloS one.

[27]  Alexandre Gramfort,et al.  Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals , 2015, NeuroImage.

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  Emery N. Brown,et al.  A Subspace Pursuit-based Iterative Greedy Hierarchical solution to the neuromagnetic inverse problem , 2013, NeuroImage.

[30]  Tohru Ozaki,et al.  A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering , 2004, NeuroImage.

[31]  Kensuke Sekihara,et al.  A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data. , 2007, Statistics in medicine.

[32]  Eduardo Martínez-Montes,et al.  EEG source imaging with spatio‐temporal tomographic nonnegative independent component analysis , 2009, Human brain mapping.

[33]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[34]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[35]  Dezhong Yao,et al.  Neuroelectric source imaging using 3SCO: A space coding algorithm based on particle swarm optimization and l 0 norm constraint , 2010, NeuroImage.

[36]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[37]  Julia P. Owen,et al.  Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data , 2012, NeuroImage.

[38]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[39]  Diego Clonda,et al.  Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models , 2006, IEEE Transactions on Biomedical Engineering.

[40]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[41]  Tohru Ozaki,et al.  Recursive penalized least squares solution for dynamical inverse problems of EEG generation , 2004, Human brain mapping.

[42]  Bin He,et al.  Electrophysiological Imaging of Brain Activity and Connectivity—Challenges and Opportunities , 2011, IEEE Transactions on Biomedical Engineering.

[43]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[44]  Wei Wu,et al.  Bayesian Machine Learning: EEG\/MEG signal processing measurements , 2016, IEEE Signal Processing Magazine.

[45]  R. Hari,et al.  Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  Dezhong Yao,et al.  Lp Norm Iterative Sparse Solution for EEG Source Localization , 2007, IEEE Transactions on Biomedical Engineering.

[47]  Hagai Attias,et al.  Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data , 2008, NeuroImage.

[48]  Hagai Attias,et al.  M/EEG imaging by learning mean norms in brain tiles , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[49]  Dezhong Yao,et al.  fMRI functional networks for EEG source imaging , 2011, Human brain mapping.

[50]  Richard M. Leahy,et al.  MEG-based imaging of focal neuronal current sources , 1995, 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record.

[51]  Théodore Papadopoulo,et al.  OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.

[52]  Anders M. Dale,et al.  Vector-based spatial–temporal minimum L1-norm solution for MEG , 2006, NeuroImage.

[53]  Wei Wu,et al.  STRAPS: A Fully Data-Driven Spatio-Temporally Regularized Algorithm for M/EEG Patch Source Imaging , 2015, Int. J. Neural Syst..

[54]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[55]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[56]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[57]  Bhaskar D. Rao,et al.  Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.

[58]  R M Leahy,et al.  A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. , 1999, Physics in medicine and biology.

[59]  Lars Kai Hansen,et al.  A hierarchical Bayesian M/EEG imagingmethod correcting for incomplete spatio-temporal priors , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.