From Variational to Deterministic Autoencoders

Variational Autoencoders (VAEs) provide a theoretically-backed and popular framework for deep generative models. However, learning a VAE from data poses still unanswered theoretical questions and considerable practical challenges. In this work, we propose an alternative framework for generative modeling that is simpler, easier to train, and deterministic, yet has many of the advantages of VAEs. We observe that sampling a stochastic encoder in a Gaussian VAE can be interpreted as simply injecting noise into the input of a deterministic decoder. We investigate how substituting this kind of stochasticity, with other explicit and implicit regularization schemes, can lead to an equally smooth and meaningful latent space without forcing it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism to sample new data, we introduce an ex-post density estimation step that can be readily applied also to existing VAEs, improving their sample quality. We show, in a rigorous empirical study, that the proposed regularized deterministic autoencoders are able to generate samples that are comparable to, or better than, those of VAEs and more powerful alternatives when applied to images as well as to structured data such as molecules. \footnote{An implementation is available at: \url{this https URL}}

[1]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[2]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[3]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[4]  Guozhong An,et al.  The Effects of Adding Noise During Backpropagation Training on a Generalization Performance , 1996, Neural Computation.

[5]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[6]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[7]  T. Chan,et al.  Variational image inpainting , 2005 .

[8]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[9]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[10]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[11]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[12]  Hugo Larochelle,et al.  The Neural Autoregressive Distribution Estimator , 2011, AISTATS.

[13]  Yoshua Bengio,et al.  A Generative Process for sampling Contractive Auto-Encoders , 2012, ICML 2012.

[14]  Pascal Vincent,et al.  Generalized Denoising Auto-Encoders as Generative Models , 2013, NIPS.

[15]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[16]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[17]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[18]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[19]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[20]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[21]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[22]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[23]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[24]  Alán Aspuru-Guzik,et al.  What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery , 2015 .

[25]  Nikos Komodakis,et al.  Wide Residual Networks , 2016, BMVC.

[26]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[27]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[28]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[29]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[30]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[31]  Valero Laparra,et al.  End-to-end Optimized Image Compression , 2016, ICLR.

[32]  Lucas Theis,et al.  Amortised MAP Inference for Image Super-resolution , 2016, ICLR.

[33]  Samy Bengio,et al.  Understanding deep learning requires rethinking generalization , 2016, ICLR.

[34]  Stefano Ermon,et al.  Towards Deeper Understanding of Variational Autoencoding Models , 2017, ArXiv.

[35]  Pieter Abbeel,et al.  Variational Lossy Autoencoder , 2016, ICLR.

[36]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[37]  Erhardt Barth,et al.  A Hybrid Convolutional Variational Autoencoder for Text Generation , 2017, EMNLP.

[38]  Jascha Sohl-Dickstein,et al.  REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models , 2017, NIPS.

[39]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[40]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[41]  Ruslan Salakhutdinov,et al.  Geometry of Optimization and Implicit Regularization in Deep Learning , 2017, ArXiv.

[42]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[43]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[44]  Bernhard Schölkopf,et al.  EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[45]  Fabio Viola,et al.  Taming VAEs , 2018, ArXiv.

[46]  Olivier Bachem,et al.  Assessing Generative Models via Precision and Recall , 2018, NeurIPS.

[47]  Bernhard Schölkopf,et al.  Tempered Adversarial Networks , 2018, ICML.

[48]  Xiaohua Zhai,et al.  The GAN Landscape: Losses, Architectures, Regularization, and Normalization , 2018, ArXiv.

[49]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[50]  Bernhard Schölkopf,et al.  Wasserstein Auto-Encoders , 2017, ICLR.

[51]  Sebastian Nowozin,et al.  Which Training Methods for GANs do actually Converge? , 2018, ICML.

[52]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[53]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[54]  Alexander A. Alemi,et al.  Fixing a Broken ELBO , 2017, ICML.

[55]  Mario Lucic,et al.  Are GANs Created Equal? A Large-Scale Study , 2017, NeurIPS.

[56]  Tieniu Tan,et al.  IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis , 2018, NeurIPS.

[57]  David Lopez-Paz,et al.  Optimizing the Latent Space of Generative Networks , 2017, ICML.

[58]  Shakir Mohamed,et al.  Distribution Matching in Variational Inference , 2018, ArXiv.

[59]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[60]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[61]  Andriy Mnih,et al.  Resampled Priors for Variational Autoencoders , 2018, AISTATS.

[62]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[63]  Michael J. Black,et al.  Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders , 2018, AAAI.

[64]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.