Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain

[1]  Harrison W. Gabel,et al.  Disruption of DNA methylation-dependent long gene repression in Rett syndrome , 2015, Nature.

[2]  Loyal A. Goff,et al.  DeCoN: Genome-wide Analysis of In Vivo Transcriptional Dynamics during Pyramidal Neuron Fate Selection in Neocortex , 2015, Neuron.

[3]  Benjamin A Garcia,et al.  Analytical tools and current challenges in the modern era of neuroepigenomics , 2014, Nature Neuroscience.

[4]  V. Beneš,et al.  Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease , 2014, Nature Communications.

[5]  Thomas Vierbuchen,et al.  Genome-wide identification and characterization of functional neuronal activity–dependent enhancers , 2014, Nature Neuroscience.

[6]  J. Mallm,et al.  Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development , 2014, Genome research.

[7]  David T. W. Jones,et al.  Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing , 2014, Nature.

[8]  N. Kessaris,et al.  Genetic programs controlling cortical interneuron fate , 2014, Current Opinion in Neurobiology.

[9]  Alan R. Mardinly,et al.  Npas4 Regulates Excitatory-Inhibitory Balance within Neural Circuits through Cell-Type-Specific Gene Programs , 2014, Cell.

[10]  F. Conlon,et al.  Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT) , 2014, Development.

[11]  S. Josselyn,et al.  Emerging roles for MEF2 transcription factors in memory , 2014, Genes, brain, and behavior.

[12]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[13]  Guoping Fan,et al.  Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain , 2013, Nature Neuroscience.

[14]  Wei Li,et al.  Large conserved domains of low DNA methylation maintained by Dnmt3a , 2013, Nature Genetics.

[15]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[16]  G. Hon,et al.  Adult tissue methylomes harbor epigenetic memory at embryonic enhancers , 2013, Nature Genetics.

[17]  Matthew D. Schultz,et al.  Global Epigenomic Reconfiguration During Mammalian Brain Development , 2013, Science.

[18]  Michael B. Stadler,et al.  Identification of active regulatory regions from DNA methylation data , 2013, Nucleic acids research.

[19]  Michael Q. Zhang,et al.  Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells , 2013, Cell.

[20]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[21]  Hani Z. Girgis,et al.  A High-Resolution Enhancer Atlas of the Developing Telencephalon , 2013, Cell.

[22]  J. Rubenstein,et al.  Loss of Gsx1 and Gsx2 Function Rescues Distinct Phenotypes in Dlx1/2 Mutants , 2012, The Journal of comparative neurology.

[23]  K. Stankunas,et al.  Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. , 2013, Genes & development.

[24]  N. Heintz,et al.  MeCP2 binds to 5hmc enriched within active genes and accessible chromatin in the nervous system , 2012, Cell.

[25]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[26]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[27]  Philip Cayting,et al.  An encyclopedia of mouse DNA elements (Mouse ENCODE) , 2012, Genome Biology.

[28]  Patrick F. Sullivan,et al.  Genetic architectures of psychiatric disorders: the emerging picture and its implications , 2012, Nature Reviews Genetics.

[29]  S. Eddy,et al.  Cell type–specific genomics of Drosophila neurons , 2012, Nucleic acids research.

[30]  G. Hon,et al.  Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome , 2012, Cell.

[31]  M. Fagiolini,et al.  Trehalose-enhanced isolation of neuronal sub-types from adult mouse brain. , 2012, BioTechniques.

[32]  S. Henikoff,et al.  Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. , 2012, Genome research.

[33]  B. Ren,et al.  Base-Resolution Analyses of Sequence and Parent-of-Origin Dependent DNA Methylation in the Mouse Genome , 2012, Cell.

[34]  Vijay K. Tiwari,et al.  DNA-binding factors shape the mouse methylome at distal regulatory regions , 2011, Nature.

[35]  Madeleine P. Ball,et al.  Neuronal activity modifies DNA methylation landscape in the adult brain , 2011, Nature Neuroscience.

[36]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[37]  O. Hobert,et al.  The molecular and gene regulatory signature of a neuron , 2010, Trends in Neurosciences.

[38]  S. Henikoff,et al.  A simple method for gene expression and chromatin profiling of individual cell types within a tissue. , 2010, Developmental cell.

[39]  O. Marín,et al.  Generation of interneuron diversity in the mouse cerebral cortex , 2010, The European journal of neuroscience.

[40]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[41]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[42]  R. Palmiter,et al.  Cell-type-specific isolation of ribosome-associated mRNA from complex tissues , 2009, Proceedings of the National Academy of Sciences.

[43]  P. Greengard,et al.  Resource Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types , 2009 .

[44]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[45]  S. Anderson,et al.  Postmitotic Nkx2-1 Controls the Migration of Telencephalic Interneurons by Direct Repression of Guidance Receptors , 2008, Neuron.

[46]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[47]  S. Akbarian,et al.  Isolation of neuronal chromatin from brain tissue , 2008, BMC Neuroscience.

[48]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[49]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[50]  B. Black,et al.  The transcription factor MEF2C is required for craniofacial development. , 2007, Developmental cell.

[51]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[52]  E. Petricoin,et al.  Laser Capture Microdissection , 1996, Science.

[53]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[54]  A. Bird DNA methylation patterns and epigenetic memory. , 2002, Genes & development.

[55]  David J. Anderson,et al.  neurogenins,a Novel Family ofatonal-Related bHLH Transcription Factors, Are Putative Mammalian Neuronal Determination Genes That Reveal Progenitor Cell Heterogeneity in the Developing CNS and PNS , 1996, Molecular and Cellular Neuroscience.