Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  O. Creutzfeldt,et al.  Significance of intracortical inhibition in the visual cortex. , 1972, Nature: New biology.

[3]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[4]  G M Innocenti,et al.  Post-synaptic inhibitory components of the responses to moving stimuli in area 17. , 1974, Brain research.

[5]  A. Sillito Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. , 1979, The Journal of physiology.

[6]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[7]  A. A. Eddy,et al.  Note added in proof: Mechanisms of solute transport in selected eukaryotic micro-organisms , 1982 .

[8]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  C. Koch,et al.  Neuronal connections underlying orientation selectivity in cat visual cortex , 1987, Trends in Neurosciences.

[10]  D. Whitteridge,et al.  Selective responses of visual cortical cells do not depend on shunting inhibition , 1988, Nature.

[11]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[12]  An intracellular recording study of stimulus-specific response properties in cat area 17 , 1991, Brain Research.

[13]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  D. Whitteridge,et al.  Mechanisms of inhibition in cat visual cortex. , 1991, The Journal of physiology.

[15]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[17]  Trichur Raman Vidyasagar,et al.  Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings in vivo , 1993, Visual Neuroscience.

[18]  T. Sejnowski,et al.  Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. , 1994, Journal of neurophysiology.

[19]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[20]  A. Leventhal,et al.  Stimulus dependence of orientation and direction sensitivity of cat LGNd relay cells without cortical inputs: A comparison with area 17 cells , 1994, Visual Neuroscience.

[21]  T. Bonhoeffer,et al.  Relationship Between Lateral Inhibitory Connections and the Topography of the Orientation Map in Cat Visual Cortex , 1994, The European journal of neuroscience.

[22]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[23]  U. Eysel,et al.  Time‐slice analysis of inhibition in cat striate cortical neurones , 1994, Neuroreport.

[24]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[26]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[28]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[29]  A. Grinvald,et al.  Optical Imaging of the Layout of Functional Domains in Area 17 and Across the Area 17/18 Border in Cat Visual Cortex , 1995, The European journal of neuroscience.

[30]  Y. Frégnac,et al.  Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex , 1996, Journal of Physiology-Paris.

[31]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[32]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[33]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[34]  V. Bringuier,et al.  Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat. , 1997, The Journal of physiology.

[35]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[36]  Thomas H. Brown,et al.  Hebbian synaptic plasticity , 1998 .

[37]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[38]  U. Eysel,et al.  Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques , 1998, The European journal of neuroscience.

[39]  F Mechler,et al.  Robust Temporal Coding of Contrast by V1 Neurons for Transient But Not for Steady-State Stimuli , 1998, The Journal of Neuroscience.

[40]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[41]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[42]  C. Gilbert,et al.  Topography of contextual modulations mediated by short-range interactions in primary visual cortex , 1999, Nature.

[43]  Tobias Bonhoeffer,et al.  Orientation topography of layer 4 lateral networks revealed by optical imaging in cat visual cortex (area 18) , 1999, The European journal of neuroscience.

[44]  Fabio Solari,et al.  An architectural hypothesis for direction selectivity in the visual cortex: the role of spatially asymmetric intracortical inhibition , 1999, Biological Cybernetics.

[45]  J. B. Levitt,et al.  A model for the intracortical origin of orientation preference and tuning in macaque striate cortex , 1999, Visual Neuroscience.

[46]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[47]  Misha Mahowald,et al.  The Role of Recurrent Excitation in Neocortical Circuits , 1999 .

[48]  J. Kao,et al.  Organization of Intracortical Circuits in Relation to Direction Preference Maps in Ferret Visual Cortex , 1999, The Journal of Neuroscience.

[49]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[50]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[51]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[53]  M. Volgushev,et al.  Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex , 2000, The European journal of neuroscience.

[54]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[55]  D. Ferster,et al.  SELECTIVITY IN THE VISUAL CORTEX , 2000 .

[56]  M. Carandini,et al.  Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex , 2000, Nature Neuroscience.

[57]  T. Bonhoeffer,et al.  Pairing-Induced Changes of Orientation Maps in Cat Visual Cortex , 2001, Neuron.

[58]  U. Eysel,et al.  Calculating direction maps from intrinsic signals revealed by optical imaging. , 2001, Cerebral cortex.

[59]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[60]  M. Sur,et al.  Foci of orientation plasticity in visual cortex , 2001, Nature.

[61]  P. Adorján,et al.  Axonal topography of cortical basket cells in relation to orientation, direction, and ocular dominance maps , 2001, The Journal of comparative neurology.

[62]  Mriganka Sur,et al.  Synaptic Integration by V1 Neurons Depends on Location within the Orientation Map , 2002, Neuron.

[63]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[64]  R. Shapley,et al.  Suppression of neural responses to nonoptimal stimuli correlates with tuning selectivity in macaque V1. , 2002, Journal of neurophysiology.

[65]  P. Heggelund,et al.  Response variability and orientation discrimination of single cells in striate cortex of cat , 1978, Experimental Brain Research.

[66]  U. Eysel,et al.  GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex , 2004, Experimental Brain Research.

[67]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[68]  Günther Palm,et al.  A model of direction-selective “simple” cells in the visual cortex based on inhibition asymmetry , 2004, Biological Cybernetics.

[69]  F. Wörgötter,et al.  Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli , 1987, Biological Cybernetics.

[70]  O. Creutzfeldt,et al.  An intracellular analysis of visual cortical neurones to moving stimuli: Responses in a co-operative neuronal network , 2004, Experimental Brain Research.

[71]  A. Dean The variability of discharge of simple cells in the cat striate cortex , 2004, Experimental Brain Research.