Graph coloring by multiagent fusion search

A multiagent fusion search is presented for the graph coloring problem. In this method, each of agents performs the fusion search, involving a local search working in a primary exploitation role and a recombination search in a navigation role, with extremely limited memory and interacts with others through a decentralized protocol, thus agents are able to explore in parallel as well as to achieve a collective performance. As the knowledge components implemented with available structural information and in formalized forms, the Quasi-Tabu local search and grouping-based recombination rules are especially useful in addressing neutrality and ruggedness of the problem landscape. The new method has been tested on some hard benchmark graphs, and has been shown competitive in comparison with several existing algorithms. In addition, the method provides new lower bound solutions when applied to two large graphs. Some search characteristics of the proposed method is also discussed.

[1]  Jin-Kao Hao,et al.  A New Genetic Local Search Algorithm for Graph Coloring , 1998, PPSN.

[2]  Jeremy Frank,et al.  When Gravity Fails: Local Search Topology , 1997, J. Artif. Intell. Res..

[3]  Julie Stanik-Hutt,et al.  Be a Squeaky Wheel , 2008 .

[4]  Bart Selman,et al.  An Empirical Study of Greedy Local Search for Satisfiability Testing , 1993, AAAI.

[5]  Thomas G. Dietterich Learning at the Knowledge Level , 1986, Machine Learning.

[6]  Wilhelm Erben,et al.  A Grouping Genetic Algorithm for Graph Colouring and Exam Timetabling , 2000, PATAT.

[7]  Holger H. Hoos,et al.  On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT , 1999, AAAI/IAAI.

[8]  Alain Hertz,et al.  A survey of local search methods for graph coloring , 2004, Comput. Oper. Res..

[9]  Colm O'Riordan,et al.  Increasing Population Diversity Through Cultural Learning , 2006, Adapt. Behav..

[10]  Craig A. Morgenstern Distributed coloration neighborhood search , 1993, Cliques, Coloring, and Satisfiability.

[11]  Thomas Stützle,et al.  Evaluating Las Vegas Algorithms: Pitfalls and Remedies , 1998, UAI.

[12]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[13]  Feng Luo,et al.  Exploring the k-colorable landscape with Iterated Greedy , 1993, Cliques, Coloring, and Satisfiability.

[14]  Thomas G. Dietterich,et al.  Learning at the Knowledge Level Dietterich%oregon-state@csnet-relay , 1986 .

[15]  David Joslin,et al.  "Squeaky Wheel" Optimization , 1998, AAAI/IAAI.

[16]  Alain Hertz,et al.  An adaptive memory algorithm for the k-coloring problem , 2003, Discret. Appl. Math..

[17]  Yuan Yan Tang,et al.  Multi-agent oriented constraint satisfaction , 2002, Artif. Intell..

[18]  Miodrag Potkonjak,et al.  Efficient coloring of a large spectrum of graphs , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[19]  Marc Mézard,et al.  Landscape of solutions in constraint satisfaction problems , 2005, Physical review letters.

[20]  Jiming Liu,et al.  How autonomy oriented computing (AOC) tackles a computationally hard optimization problem , 2006, AAMAS '06.

[21]  A. Bandura Social learning theory , 1977 .

[22]  Jin-Kao Hao,et al.  Scatter Search for Graph Coloring , 2001, Artificial Evolution.

[23]  Toby Walsh,et al.  Search on High Degree Graphs , 2001, IJCAI.

[24]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[25]  Jiming Liu,et al.  A compact multiagent system based on autonomy oriented computing , 2005, IEEE/WIC/ACM International Conference on Intelligent Agent Technology.

[26]  Danny Weyns,et al.  On the Role of Environments in Multiagent Systems , 2005, Informatica.

[27]  E. Nowicki,et al.  A fast tabu search algorithm for the permutation flow-shop problem , 1996 .

[28]  Claudio Cioffi-Revilla,et al.  Invariance and universality in social agent-based simulations , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  John R. Anderson,et al.  Human Symbol Manipulation Within an Integrated Cognitive Architecture , 2005, Cogn. Sci..

[30]  G Gigerenzer,et al.  Reasoning the fast and frugal way: models of bounded rationality. , 1996, Psychological review.

[31]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[32]  Christine L. Mumford New Order-Based Crossovers for the Graph Coloring Problem , 2006, PPSN.

[33]  A. Glenberg,et al.  What memory is for: Creating meaning in the service of action , 1997, Behavioral and Brain Sciences.

[34]  Valmir Carneiro Barbosa,et al.  Two Novel Evolutionary Formulations of the Graph Coloring Problem , 2003, J. Comb. Optim..

[35]  Manuela M. Veloso,et al.  Multiagent Systems: A Survey from a Machine Learning Perspective , 2000, Auton. Robots.

[36]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[37]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[38]  Stefan Boettcher,et al.  Extremal optimization at the phase transition of the three-coloring problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Olivier Coudert Exact coloring of real-life graphs is easy , 1997, DAC.

[40]  Michael D. Smith,et al.  A generalized algorithm for graph-coloring register allocation , 2004, PLDI '04.

[41]  Takeshi Yamada,et al.  Genetic Algorithms, Path Relinking, and the Flowshop Sequencing Problem , 1998, Evolutionary Computation.

[42]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..

[43]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[44]  Weixiong Zhang,et al.  Configuration landscape analysis and backbone guided local search: Part I: Satisfiability and maximum satisfiability , 2004, Artif. Intell..

[45]  Jiming Liu,et al.  Toward nature-inspired computing , 2006, CACM.

[46]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[47]  Alex Pothen,et al.  What Color Is Your Jacobian? Graph Coloring for Computing Derivatives , 2005, SIAM Rev..

[48]  Kristina Lerman,et al.  Agent memory and adaptation in multi-agent systems , 2003, AAMAS '03.

[49]  Teruo Higashino,et al.  A Minimal-State Processing Search Algorithm for Graph Coloring Problems , 2000 .

[50]  Vincenzo Cutello,et al.  An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem , 2007, J. Comb. Optim..

[51]  BENNETT G. GALEF Jr,et al.  Why behaviour patterns that animals learn socially are locally adaptive , 1995, Animal Behaviour.

[52]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[53]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[54]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[55]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[56]  Nathan Linial,et al.  On the Hardness of Approximating the Chromatic Number , 2000, Comb..

[57]  Marco Chiarandini,et al.  Stochastic local search methods for highly constrained combinatorial optimisation problems: graph colouring, generalisations, and applications , 2005 .

[58]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[59]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[60]  Hakan Yildiz,et al.  A Large Neighborhood Search Heuristic for Graph Coloring , 2007, CPAIOR.

[61]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[62]  Arun Jagota,et al.  Energy function-based approaches to graph coloring , 2002, IEEE Trans. Neural Networks.

[63]  E. Visalberghi,et al.  Socially biased learning in monkeys , 2004, Learning & behavior.

[64]  Celia A. Glass,et al.  Genetic Algorithm for Graph Coloring: Exploration of Galinier and Hao's Algorithm , 2003, J. Comb. Optim..

[65]  Pascal Brisset,et al.  Graph Coloring for Air Traffic Flow Management , 2004, Ann. Oper. Res..

[66]  Chirag M. Patel,et al.  An ant-based algorithm for coloring graphs , 2008, Discret. Appl. Math..

[67]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[68]  J. Galef,et al.  Why behaviour patterns that animals learn socially are locally adaptive , 1995 .

[69]  Ajay S. Vinze,et al.  Adopting ontology to facilitate knowledge sharing , 2004, CACM.

[70]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[71]  Xiao-Feng Xie,et al.  SWAF: Swarm Algorithm Framework for Numerical Optimization , 2004, GECCO.