Optimistic Optimization of Deterministic Functions

We consider a global optimization problem of a deterministic function f in a semi-metric space, given a finite budget of n evaluations. The function f is assumed to be locally smooth (around one of its global maxima) with respect to a semi-metric l We describe two algorithms based on optimistic exploration that use a hierarchical partitioning of the space at all scales. A first contribution is an algorithm, DOO, that requires the knowledge of l. We report a finite-sample performance bound in terms of a measure of the quantity of near-optimal states. We then define a second algorithm, SOO, which does not require the knowledge of the semi-metric l under which f is smooth, and whose performance is almost as good as DOO optimally-fitted.

[1]  Olivier Teytaud,et al.  Modification of UCT with Patterns in Monte-Carlo Go , 2006 .

[2]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[3]  Luc De Raedt,et al.  Proceedings of the 12th European Conference on Machine Learning , 2001 .

[4]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[5]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[6]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[7]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[8]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[9]  Peter Auer,et al.  Improved Rates for the Stochastic Continuum-Armed Bandit Problem , 2007, COLT.

[10]  Pavel Brazdil,et al.  Proceedings of the European Conference on Machine Learning , 1993 .

[11]  Ernst-Georg Krause,et al.  Biochemical mechanisms in heart function , 1998 .

[12]  C. T. Kelley,et al.  Modifications of the direct algorithm , 2001 .

[13]  D. Finkel,et al.  Convergence analysis of the direct algorithm , 2004 .

[14]  A. Neumaier Interval methods for systems of equations , 1990 .

[15]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[16]  Rémi Munos,et al.  Pure Exploration in Multi-armed Bandits Problems , 2009, ALT.

[17]  Robert D. Kleinberg Nearly Tight Bounds for the Continuum-Armed Bandit Problem , 2004, NIPS.

[18]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[19]  Jia Yuan Yu,et al.  Lipschitz Bandits without the Lipschitz Constant , 2011, ALT.

[20]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[21]  Rémi Munos,et al.  Optimistic Planning of Deterministic Systems , 2008, EWRL.

[22]  R. Munos,et al.  Best Arm Identification in Multi-Armed Bandits , 2010, COLT.

[23]  Csaba Szepesvári,et al.  Online Optimization in X-Armed Bandits , 2008, NIPS.

[24]  Rémi Munos,et al.  Bandit Algorithms for Tree Search , 2007, UAI.

[25]  Aleksandrs Slivkins,et al.  Multi-armed bandits on implicit metric spaces , 2011, NIPS.

[26]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[27]  Csaba Szepesvári,et al.  –armed Bandits , 2022 .

[28]  Rémi Munos,et al.  Open Loop Optimistic Planning , 2010, COLT.

[29]  Eli Upfal,et al.  Multi-Armed Bandits in Metric Spaces ∗ , 2008 .

[30]  Bart De Schutter,et al.  Optimistic planning for sparsely stochastic systems , 2011, 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).