Metric-Based Heuristic Space Diversity Management in a Meta-Hyper-Heuristic Framework

This paper investigates various strategies for the management of heuristic space diversity within the context of a meta-hyper-heuristic algorithm. In contrast to all previously developed heuristic space diversity management strategies, this paper makes use of a heuristic space diversity metric to monitor heuristic space diversity throughout the optimization run and trigger the need for increased or decreased heuristic space diversity. Three different heuristic space diversity management strategies are evaluated. Maintaining a high level of heuristic space diversity throughout the optimization run is shown to be the best performing strategy. Good performance is also demonstrated with respect to a state-of-the-art multi-method algorithm, another successful diversity controlling meta-hyper-heuristic and the best-performing constituent algorithm.

[1]  Andries P. Engelbrecht,et al.  Solution Space Diversity Management in a Meta-hyperheuristic Framework , 2013, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence.

[2]  Andries Petrus Engelbrecht,et al.  Investigating the use of local search for improving meta-hyper-heuristic performance , 2012, 2012 IEEE Congress on Evolutionary Computation.

[3]  Xin Yao,et al.  Self-adaptive differential evolution with neighborhood search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[4]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[5]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[6]  Edmund K. Burke,et al.  Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems , 2009, J. Oper. Res. Soc..

[7]  Andries Petrus Engelbrecht Scalability of a heterogeneous particle swarm optimizer , 2011, 2011 IEEE Symposium on Swarm Intelligence.

[8]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[9]  Michèle Sebag,et al.  Fitness-AUC bandit adaptive strategy selection vs. the probability matching one within differential evolution: an empirical comparison on the bbob-2010 noiseless testbed , 2010, GECCO '10.

[10]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[11]  Andries Petrus Engelbrecht,et al.  Alternative hyper-heuristic strategies for multi-method global optimization , 2010, IEEE Congress on Evolutionary Computation.

[12]  A. Engelbrecht,et al.  A new locally convergent particle swarm optimiser , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[13]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[14]  Andries Petrus Engelbrecht,et al.  Multi-method algorithms: Investigating the entity-to-algorithm allocation problem , 2013, 2013 IEEE Congress on Evolutionary Computation.

[15]  Andries Petrus Engelbrecht,et al.  An analysis of heterogeneous cooperative algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[16]  Fei Peng,et al.  Population-Based Algorithm Portfolios for Numerical Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[17]  Andries Petrus Engelbrecht,et al.  Investigating the impact of alternative evolutionary selection strategies on multi-method global optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).