Monotone and near-monotone biochemical networks

Monotone subsystems have appealing properties as components of larger networks, since they exhibit robust dynamical stability and predictability of responses to perturbations. This suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone in the sense of being decomposable into a “small” number of monotone components, In addition, recent research has shown that much insight can be attained from decomposing networks into monotone subsystems and the analysis of the resulting interconnections using tools from control theory. This paper provides an expository introduction to monotone systems and their interconnections, describing the basic concepts and some of the main mathematical results in a largely informal fashion.

[1]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[2]  P. Polácik,et al.  Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations , 1993 .

[3]  M Laurent,et al.  Multistability: a major means of differentiation and evolution in biological systems. , 1999, Trends in biochemical sciences.

[4]  R. Jackson,et al.  General mass action kinetics , 1972 .

[5]  Mathukumalli Vidyasagar,et al.  Cross-Positive Matrices , 1970 .

[6]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[7]  S. Mangan,et al.  The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. , 2003, Journal of molecular biology.

[8]  Eduardo D Sontag,et al.  On the stability of a model of testosterone dynamics , 2004, Journal of mathematical biology.

[9]  Hassan K. Khalil,et al.  Nonlinear Systems Third Edition , 2008 .

[10]  M. Feinberg The existence and uniqueness of steady states for a class of chemical reaction networks , 1995 .

[11]  Stephen Smale,et al.  THE DYNAMICAL SYSTEMS APPROACH TO DIFFERENTIAL EQUATIONS , 2007 .

[12]  C. Widmann,et al.  Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. , 1999, Physiological reviews.

[13]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[14]  S. Smale On the differential equations of species in competition , 1976, Journal of mathematical biology.

[15]  R. Thomas,et al.  Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. , 2001, Chaos.

[16]  L Wolpert,et al.  Thresholds in development. , 1977, Journal of theoretical biology.

[17]  J. Mahaffy,et al.  Stability analysis for a mathematical model of the lac operon , 1999 .

[18]  E. Camouzis,et al.  Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures , 2001 .

[19]  Horst R. Thieme,et al.  Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations , 1992 .

[20]  M. Feinberg,et al.  Dynamics of open chemical systems and the algebraic structure of the underlying reaction network , 1974 .

[21]  E. Gilbert Lattice Theoretic Properties of Frontal Switching Functions , 1954 .

[22]  M. Hirsch Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere , 1985 .

[23]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[24]  B. Séraphin,et al.  Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion , 2001, The EMBO journal.

[25]  M. Hirsch,et al.  Chapter 4 Monotone Dynamical Systems , 2006 .

[26]  J. Ferrell,et al.  Bistability in the JNK cascade , 2001, Current Biology.

[27]  David Angeli,et al.  On predator-prey systems and small-gain theorems. , 2004, Mathematical biosciences and engineering : MBE.

[28]  Eduardo D. Sontag,et al.  Nonmonotone systems decomposable into monotone systems with negative feedback , 2006 .

[29]  James P. Keener,et al.  Mathematical physiology , 1998 .

[30]  J. Smillie Competitive and Cooperative Tridiagonal Systems of Differential Equations , 1984 .

[31]  E. N. Dancer Some remarks on a boundedness assumption for monotone dynamical systems , 1998 .

[32]  Eduardo Sontag,et al.  Global attractivity, I/O monotone small-gain theorems, and biological delay systems , 2005 .

[33]  M. Ptashne A genetic switch : phage λ and higher organisms , 1992 .

[34]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[35]  P. Haccou Mathematical Models of Biology , 2022 .

[36]  Jean-Luc Gouzé,et al.  A criterion of global convergence to equilibrium for differential systems. Application to Lotka-Volterra systems , 1988 .

[37]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Marek S. Skrzypek,et al.  YPDTM, PombePDTM and WormPDTM: model organism volumes of the BioKnowledgeTM Library, an integrated resource for protein information , 2001, Nucleic Acids Res..

[39]  E. D. Sontagc,et al.  Nonmonotone systems decomposable into monotone systems with negative feedback , 2005 .

[40]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[41]  L. Glass,et al.  The logical analysis of continuous, non-linear biochemical control networks. , 1973, Journal of theoretical biology.

[42]  Eduardo D. Sontag,et al.  Almost Global Convergence in Singular Perturbations of Strongly Monotone Systems , 2006 .

[43]  Eduardo Sontag,et al.  A Remark on Multistability for Monotone Systems II , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[44]  B. Kholodenko,et al.  Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. , 2000, European journal of biochemistry.

[45]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[46]  Prahlad T. Ram,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2002, Science.

[47]  Eduardo Sontag,et al.  Steady-states of receptor-ligand dynamics: a theoretical framework. , 2004, Journal of theoretical biology.

[48]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[49]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[50]  F. Harary On the notion of balance of a signed graph. , 1953 .

[51]  Lee A. Segel,et al.  Modeling Dynamic Phenomena in Molecular and Cellular Biology , 1984 .

[52]  Peter Hess,et al.  Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems , 1993 .

[53]  Eduardo Sontag Stability and stabilization: discontinuities and the effect of disturbances , 1999, math/9902026.

[54]  David Angeli,et al.  Interconnections of Monotone Systems with Steady-State Characteristics , 2004 .

[55]  D. Lauffenburger,et al.  A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen‐Activated Protein Kinase (MAPK) Pathway Model , 2001, Biotechnology progress.

[56]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[57]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[58]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Hal L. Smith,et al.  Convergent and oscillatory activation dynamics for cascades of neural nets with nearest neighbor competitive or cooperative interactions , 1991, Neural Networks.

[60]  P. E. Rapp,et al.  A theoretical investigation of a large class of biochemical oscillators , 1975 .

[61]  Eduardo D. Sontag,et al.  Monotone systems under positive feedback: multistability and a reduction theorem , 2005, Syst. Control. Lett..

[62]  C. Thron The secant condition for instability in biochemical feedback control—I. The role of cooperativity and saturability , 1991 .

[63]  F. Clarke,et al.  Nonlinear Analysis, Differential Equations and Control , 1999 .

[64]  Jack K. Hale Asymptotic behavior of gradient dissipative systems , 1987 .

[65]  Stefan Schuster,et al.  Topological analysis of metabolic networks based on Petri net theory , 2003, Silico Biol..

[66]  E. Wimmer,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2022 .

[67]  A. Goldbeter A model for circadian oscillations in the Drosophila period protein (PER) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[68]  David Angeli,et al.  Systems with counterclockwise input-output dynamics , 2006, IEEE Transactions on Automatic Control.

[69]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[70]  David Angeli,et al.  A small-gain theorem for almost global convergence of monotone systems , 2004, Syst. Control. Lett..

[71]  Morris W. Hirsch,et al.  Convergent activation dynamics in continuous time networks , 1989, Neural Networks.

[72]  K. P. Hadeler,et al.  Quasimonotone systems and convergence to equilibrium in a population genetic model , 1983 .

[73]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[74]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Ii. the Species-reactions Graph , 2022 .

[75]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  J. Demongeot,et al.  Positive and negative feedback: striking a balance between necessary antagonists. , 2002, Journal of theoretical biology.

[77]  M. Feinberg Some Recent Results in Chemical Reaction Network Theory , 1991 .

[78]  J. Lisman A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[79]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[80]  Eduardo D Sontag,et al.  Oscillations in multi-stable monotone systems with slowly varying feedback. , 2007, Journal of differential equations.

[81]  B. L. Clarke Stability of Complex Reaction Networks , 2007 .

[82]  G. Rinaldi,et al.  Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm , 1995 .

[83]  Eduardo D. Sontag,et al.  Algorithmic and complexity results for decompositions of biological networks into monotone subsystems , 2007, Biosyst..

[84]  M. Husain,et al.  A model for the control of testosterone secretion. , 1986, Journal of theoretical biology.

[85]  Thomas Mestl,et al.  FEEDBACK LOOPS, STABILITY AND MULTISTATIONARITY IN DYNAMICAL SYSTEMS , 1995 .

[86]  J. E. Kranz,et al.  YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. , 2001, Nucleic acids research.

[87]  El Houssine Snoussi Necessary Conditions for Multistationarity and Stable Periodicity , 1998 .

[88]  David Angeli,et al.  On the structural monotonicity of chemical reaction networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[89]  P. Polácik,et al.  Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems , 1992 .

[90]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[92]  Tomáš Gedeon,et al.  Cyclic Feedback Systems , 1998 .

[93]  James E. Ferrell,et al.  Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. , 2001, Chaos.

[94]  Liming Wang,et al.  A Remark on Singular Perturbations of Strongly Monotone Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[95]  J. Mallet-Paret,et al.  The Poincare-Bendixson theorem for monotone cyclic feedback systems , 1990 .

[96]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[97]  M. Hirsch,et al.  4. Monotone Dynamical Systems , 2005 .

[98]  Eduardo Sontag,et al.  A Petri net approach to the study of persistence in chemical reaction networks. , 2006, Mathematical biosciences.

[99]  Rolf Niedermeier,et al.  Optimal Edge Deletions for Signed Graph Balancing , 2007, WEA.

[100]  Eduardo Sontag,et al.  Monotone Chemical Reaction Networks , 2007 .

[101]  D. J. Allwright,et al.  A global stability criterion for simple control loops , 1977 .

[102]  Denis Thieffry,et al.  A description of dynamical graphs associated to elementary regulatory circuits , 2003, ECCB.

[103]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—II. Multiple steady states for networks of deficiency one , 1988 .

[104]  Jiang Jifa,et al.  On the Global Stability of Cooperative Systems , 1994 .

[105]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[106]  Michael L. Mavrovouniotis,et al.  Petri Net Representations in Metabolic Pathways , 1993, ISMB.

[107]  P. Volkmann Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen , 1972 .

[108]  E. M.,et al.  Statistical Mechanics , 2021, On Complementarity.

[109]  E.D. Sontag,et al.  An analysis of a circadian model using the small-gain approach to monotone systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[110]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[111]  J. Ferrell Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. , 1996, Trends in biochemical sciences.

[112]  Eric Goles Ch.,et al.  On limit cycles of monotone functions with symmetric connection graph , 2004, Theor. Comput. Sci..

[113]  J. Monod,et al.  Teleonomic mechanisms in cellular metabolism, growth, and differentiation. , 1961, Cold Spring Harbor symposia on quantitative biology.

[114]  David Angeli,et al.  Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles ☆ , 2008 .

[115]  Michael Malisoff,et al.  A small-gain theorem for motone systems with multivalued input-state characteristics , 2005, IEEE Transactions on Automatic Control.

[116]  D. DeAngelis,et al.  Positive Feedback in Natural Systems , 1986 .

[117]  John J. Tyson,et al.  The Dynamics of Feedback Control Circuits in Biochemical Pathways , 1978 .

[118]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[119]  W. Walter Differential and Integral Inequalities , 1970 .

[120]  H. Othmer The qualitative dynamics of a class of biochemical control circuits , 1976, Journal of mathematical biology.

[121]  H. Smith,et al.  Oscillations and multiple steady states in a cyclic gene model with repression , 1987, Journal of mathematical biology.

[122]  F. Cross,et al.  Testing a mathematical model of the yeast cell cycle. , 2002, Molecular biology of the cell.

[123]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[125]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[126]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[127]  David Angeli,et al.  Multi-stability in monotone input/output systems , 2003, Syst. Control. Lett..

[128]  John J. Tyson,et al.  Existence of periodic solutions for negative feedback cellular control systems , 1977 .

[129]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[130]  Hunter S. Snevily Combinatorics of finite sets , 1991 .

[131]  E D Sontag,et al.  Some new directions in control theory inspired by systems biology. , 2004, Systems biology.

[132]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[133]  J. Gouzé Positive and Negative Circuits in Dynamical Systems , 1998 .

[134]  James E. Ferrell,et al.  The JNK Cascade as a Biochemical Switch in Mammalian Cells Ultrasensitive and All-or-None Responses , 2003, Current Biology.

[135]  S. Walcher On Cooperative Systems with Respect to Arbitrary Orderings , 2001 .

[136]  Sorin Istrail,et al.  Statistical Mechanics, Three-Dimensionality and NP-Completeness: I. Universality of Intractability of the Partition Functions of the Ising Model Across Non-Planar Lattices , 2000, STOC 2000.

[137]  René Thomas On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations , 1981 .

[138]  Madalena Chaves,et al.  Robustness and fragility of Boolean models for genetic regulatory networks. , 2005, Journal of theoretical biology.