Using Headless Chicken Crossover for Local Guide Selection When Solving Dynamic Multi-objective Optimization

One of the major issues that should be addressed when solving dynamic problems, is a loss of diversity. In addition, when solving multi-objective optimisation problems, one of the goals is to find a diverse set of solutions. Therefore, a key component of a dynamic multi-objective optimisation algorithm (DMOA) is an approach to increase diversity of either the dynamic multi-objective optimisation algorithm DMOA’s individuals or the guides that guide the search of the DMOA. This study investigates whether using the headless chicken macromutation operator for local guide selection improves the performance of the dynamic vector evaluated particle swarm optimisation (DVEPSO) algorithm. Results indicate that the operator does improve the accuracy of the set of solutions that is found by DVEPSO. However, fewer solutions are found.

[1]  Kay Chen Tan,et al.  A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment , 2010, Memetic Comput..

[2]  Andries Petrus Engelbrecht,et al.  Dynamic Multi-objective Optimisation Using PSO , 2010, Multi-Objective Swarm Intelligent System.

[3]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Andries Petrus Engelbrecht,et al.  Benchmarks for dynamic multi-objective optimisation algorithms , 2014, CSUR.

[5]  Andries Petrus Engelbrecht,et al.  Issues with performance measures for dynamic multi-objective optimisation , 2013, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[6]  Andries Petrus Engelbrecht,et al.  Benchmarks for dynamic multi-objective optimisation , 2013, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[7]  Andries Petrus Engelbrecht,et al.  Performance measures for dynamic multi-objective optimisation algorithms , 2013, Inf. Sci..

[8]  Julio Ortega Lopera,et al.  A single front genetic algorithm for parallel multi-objective optimization in dynamic environments , 2009, Neurocomputing.

[9]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[10]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[11]  Andries P. Engelbrecht,et al.  Analysing the performance of dynamic multi-objective optimisation algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[12]  K. Deb,et al.  Real-coded evolutionary algorithms with parent-centric recombination , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  A. Carlisle,et al.  Tracking changing extrema with adaptive particle swarm optimizer , 2002, Proceedings of the 5th Biannual World Automation Congress.

[14]  Andries Petrus Engelbrecht,et al.  CIlib: A collaborative framework for Computational Intelligence algorithms - Part II , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[15]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[16]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.