Solving linear algebraic equations can be interesting

Here A is a square matrix of order n, whose elements are given real numbers ai3' with a determinant d(A)9 0] x and b denote column vectors, and the components of b are given real numbers. (Complex numbers would offer no essential difficulty.) It is desired to calculate the components of the unique solution x = A~b; here A~ is the inverse of A. Such problems arise in the most diverse branches of science and technology, either directly (e.g., the normal equations of the leastsquares adjustment of observations) or in an approximation to another problem (e.g., the difference-equation approximation to a selfadjoint boundary-value problem for a partial differential equation). These two are very frequent sources of numerical systems ; note that A>0 (i.e., A is symmetric and positive definite) in both examples. The order n is considered to range from perhaps 6 or 8 up to as large a number as can be handled. Stearn [ i l l ] , for instance, mentions the solution of a system of order 2300 by the U.S. Coast and Geodetic Survey. The accuracy demanded of an approximate solution £ varies widely; even the function which is to measure the accuracy of £ varies or is unknown. Some "customers" want to make the length \b— A%\ small; some, |^—^4 ô| ; others have apparently thought only in terms of getting A~b exactly. We all know that each component of the solution A~b can be expressed as a quotient of determinants by Cramer's rule. We have all evaluated determinants of orders 3, 4, and possibly 5, with a.-y integers; it is quite easy and rather boring. I therefore suspect that the average mathematician damns the practical solution of (1) as being both trivial and dull.

[1]  Olga Taussky,et al.  Simultaneous linear equations and the determination of eigenvalues , 1955 .

[2]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[3]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[4]  D. Young Iterative methods for solving partial difference equations of elliptic type , 1954 .

[5]  S. Perlis Theory of Matrices , 1953 .

[6]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[7]  O. Taussky,et al.  Systems of Equations, Matrices and Determinants , 1952 .

[8]  C. Lanczos Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.

[9]  R. P. Eddy,et al.  On the Iterative Solution of a System of Equations , 1952 .

[10]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[11]  M. Stein Gradient methods in the solution of systems of linear equations , 1952 .

[12]  W. Karush Convergence of a method of solving linear problems , 1952 .

[13]  W. Wasow A note on the inversion of matrices by random walks , 1952 .

[14]  S. Lubkin,et al.  A method of summing infinite series , 1952 .

[15]  On the distribution of a convex even function of several independent rounding-off errors , 1952 .

[16]  Eduard Stiefel,et al.  Über einige Methoden der Relaxationsrechnung , 1952 .

[17]  George E. Forsythe,et al.  An extension of Gauss’ transformation for improving the condition of systems of linear equations , 1952 .

[18]  J. Stearn Iterative solutions of normal equations , 1951 .

[19]  R. Zurmühl Matrizen : eine Darstellung für Ingenieure , 1951 .

[20]  M. Hestenes,et al.  A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix , 1951 .

[21]  A. D. L. Garza,et al.  AN ITERATIVE METHOD FOR SOLVING SYSTEMS OF LINEAR EQUATIONS , 1951 .

[22]  J. Neumann,et al.  Numerical inverting of matrices of high order. II , 1951 .

[23]  A. Ostrowski On the convergence of cyclic linear iterations for symmetric and nearly symmetric matrices, II , 1951 .

[24]  O. Taussky Bibliography on bounds for characteristic roots of finite matrices , 1951 .

[25]  D. A. Flanders,et al.  Numerical Determination of Fundamental Modes , 1950 .

[26]  W. Prager,et al.  Reissner Anniversary Volume: Contributions to Applied Mechanics. , 1950 .

[27]  R. A. Leibler,et al.  Matrix inversion by a Monte Carlo method , 1950 .

[28]  A. Householder Some Numerical Methods for Solving Systems of Linear Equations , 1950 .

[29]  Olga Taussky,et al.  Notes on numerical analysis. II. Note on the condition of matrices , 1950 .

[30]  H. D. Huskey Characteristics of the Institute for Numerical Analysis computer , 1950 .

[31]  S. Frankel Convergence rates of iterative treatments of partial differential equations , 1950 .

[32]  L. Collatz Über die Konvergenzkriterien bei Iterationsverfahren für lineare Gleichungssysteme , 1950 .

[33]  J. Todd,et al.  The condition of a certain matrix , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  Practical Methods for the Solution of Linear Equations and the Inversion of Matrices , 1950 .

[35]  A. C. Aitken IV.—Studies in Practical Mathematics. V. On the Iterative Solution of a System of Linear Equations , 1950, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[36]  E. Reich On the Convergence of the Classical Iterative Method of Solving Linear Simultaneous Equations , 1949 .

[37]  William Edmund Milne,et al.  Numerical Calculus: Approximations, Interpolation, Finite Differences, Numerical Integration, and Curve Fitting , 1949 .

[38]  P. Stein,et al.  On the Solution of Linear Simultaneous Equations By Iteration , 1948 .

[39]  H. D. Huskey,et al.  NOTES ON THE SOLUTION OF ALGEBRAIC LINEAR SIMULTANEOUS EQUATIONS , 1948 .

[40]  L. Fox,et al.  A SHORT ACCOUNT OF RELAXATION METHODS , 1948 .

[41]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .

[42]  Francis Joseph Murray,et al.  The theory of mathematical machines , 1947 .

[43]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .

[44]  D. Christopherson,et al.  Relaxation Methods Applied to Engineering Problems , 1947, Nature.

[45]  A. T. Lonseth The propagation of error in linear problems , 1947 .

[46]  L. J. COMRIE A Manual of Operation for the Automatic Sequence Controlled Calculator , 1946, Nature.

[47]  Paul A. Samuelsos A Convergent Iterative Process , 1945 .

[48]  J. S. Frame Machines for solving algebraic equations , 1945 .

[49]  F. E. Satterthwaite Error Control in Matrix Calculation , 1944 .

[50]  H. Hotelling Some New Methods in Matrix Calculation , 1943 .

[51]  M. Bingham A New Method for Obtaining the Inverse Matrix , 1941 .

[52]  L. B. Tuckerman On the Mathematically Significant Figures in the Solution of Simultaneous Linear Equations , 1941 .

[53]  G. Temple,et al.  The General Theory of Relaxation Methods Applied to Linear Systems , 1939 .

[54]  Frazer Elementary Matrices: Frontmatter , 1938 .

[55]  H. Wittmeyer,et al.  Einfluß der Änderung einer Matrix auf die Lösung des zugehörigen Gleichungssystems, sowie auf die charakteristischen Zahlen und die Eigenvektoren , 1936 .

[56]  G. Schulz Iterative Berechung der reziproken Matrix , 1933 .

[57]  C. C. Macduffee,et al.  The Theory of Matrices , 1933 .

[58]  Hans Boltz,et al.  Entwickelungs-verfahren zum ausgleichen geodätischer netze nach der methode der kleinsten quadrate , 2022 .

[59]  Maurice Janet,et al.  Sur les systèmes d'équations aux dérivées partielles , 1920 .

[60]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[61]  Wladimir Markoff,et al.  Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen , 1916 .

[62]  F. R. Moulton On the Solutions of Linear Equations Having Small Determinants , 1913 .

[63]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[64]  Ernst Schröder,et al.  Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen , 1870 .