Design of Yagi-Uda antennas using comprehensive learning particle swarm optimisation

A method of using particle swarm optimisation (PSO) algorithms to optimise the element spacing and lengths of Yagi-Uda antennas is presented. SuperNEC, an object-oriented version of the numerical electromagnetic code (NEC-2) is used to evaluate the performance of various Yagi-Uda antenna designs. In order to show the capabilities of the PSO algorithm in Yagi-Uda antenna design, three different antenna design cases are optimised for various performance specifications. The three objectives considered are gain only, gain and input impedance only, and gain, input impedance and relative sidelobe level (rSLL). To alleviate the premature convergence problem of PSO, a novel learning strategy is employed. Each design problem is optimised using three variants of PSO algorithms, namely the modified PSO, fitness-distance ratio PSO (FDR-PSO), and comprehensive learning PSO (CLPSO). For the purpose of comparison and benchmarking, equally spaced arrays, genetic algorithm optimised antenna design, and computational intelligence optimised antenna design are considered. The results clearly show that the CLPSO is a robust and useful optimisation tool for designing Yagi antennas for the desired target specifications.

[1]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[2]  G.M. Rebeiz,et al.  A 24-GHz high-gain Yagi-Uda antenna array , 2004, IEEE Transactions on Antennas and Propagation.

[3]  H. Ehrenspeck,et al.  A new method for obtaining maximum gain from yagi antennas , 1959 .

[4]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  Yahya Rahmat-Samii,et al.  Particle swarm optimization for reconfigurable phase‐differentiated array design , 2003 .

[6]  G. Thiele,et al.  Antenna theory and design , 1981 .

[7]  David K. Cheng,et al.  Optimum element lengths for Yagi-Uda arrays , 1975 .

[8]  D. Cheng,et al.  Gain optimization for Yagi-Uda arrays , 1991, IEEE Antennas and Propagation Magazine.

[9]  E. E. Altshuler,et al.  Wire-antenna designs using genetic algorithms , 1997 .

[10]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[11]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[12]  Jing J. Liang,et al.  Evaluation of Comprehensive Learning Particle Swarm Optimizer , 2004, ICONIP.

[13]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[14]  William T. Joines,et al.  Design of Yagi-Uda antennas using genetic algorithms , 1997 .

[15]  T. Ray,et al.  Optimum design of Yagi-Uda antennas using computational intelligence , 2004, IEEE Transactions on Antennas and Propagation.

[16]  Kalyan Veeramachaneni,et al.  Fitness-distance-ratio based particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[17]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[18]  T. Itoh,et al.  Microstrip-fed quasi-Yagi antenna with broadband characteristics , 1998 .

[19]  Tatsuo Itoh,et al.  Coplanar waveguide fed quasi-Yagi antenna , 2000 .

[20]  David K. Cheng,et al.  Optimum element spacings for Yagi-Uda arrays , 1972 .