A neural model of the cortical representation of egocentric distance.

Neurons in the visual cortex of monkeys respond selectively to the disparity between the images in the two eyes. Recent recordings have shown that some of the disparity-selective neurons in the primary visual cortex and the posterior parietal cortex are modulated by the distance of fixation. A population of such gain-modulated, disparity-selective neurons forms a set of basis functions of horizontal disparity and distance of fixation that can be used as an intermediate representation for computing egocentric distance. This distributed representation is consistent with psychophysical studies of human depth perception; in contrast, neurons explicitly tuned to distance are not consistent with how we perceive distance. In a population model that includes noise in the firing rates of neurons, the perceived distance is shown to be the estimate of geometrical distance that minimizes the variance of the estimation.

[1]  G. Holmes DISTURBANCES OF VISUAL ORIENTATION , 1918, The British journal of ophthalmology.

[2]  G. Holmes,et al.  DISTURBANCES OF SPATIAL ORIENTATION AND VISUAL ATTENTION, WITH LOSS OF STEREOSCOPIC VISION , 1919 .

[3]  G. Westheimer,et al.  Qualitative depth localization with diplopic images. , 1956, Journal of the Optical Society of America.

[4]  R. Godwin-Austen A case of visual disorientation. , 1965, Journal of neurology, neurosurgery, and psychiatry.

[5]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[6]  John M. Foley,et al.  Visually directed pointing as a function of target distance, direction, and available cues , 1972 .

[7]  W Richards,et al.  Local versus global stereopsis: two mechanisms? , 1974, Vision research.

[8]  C. Hofsten,et al.  The role of convergence in visual space perception , 1976, Vision Research.

[9]  M. Ritter,et al.  Effect of disparity and viewing distance on perceived depth , 1977 .

[10]  C. Von Hofsten Binocular Convergence as a Determinant of Reaching Behavior in Infancy , 1977, Perception.

[11]  C. Hofsten Binocular convergence as a determinant of reaching behavior in infancy , 1977 .

[12]  C. Hofsten Recalibration of the Convergence System , 1979 .

[13]  J. M. Foley Binocular distance perception. , 1980, Psychological review.

[14]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[15]  H. C. Longuet-Higgins The Role of the Vertical Dimension in Stereoscopic Vision , 1982, Perception.

[16]  J. E. W. Mayhew,et al.  A computational model of binocular depth perception , 1982, Nature.

[17]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[19]  J. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[20]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[21]  B. C. Motter,et al.  Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms , 1985, Vision Research.

[22]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[23]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[24]  Robert M. Farber,et al.  How Neural Nets Work , 1987, NIPS.

[25]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[26]  G. Poggio,et al.  Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  S. Levay,et al.  Ocular dominance and disparity coding in cat visual cortex , 1988, Visual Neuroscience.

[28]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[29]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[30]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  R. Andersen Visual and eye movement functions of the posterior parietal cortex. , 1989, Annual review of neuroscience.

[32]  Kurt Hornik,et al.  FEED FORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS , 1989 .

[33]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[34]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[35]  T. Sejnowski,et al.  Neural network model of visual cortex for determining surface curvature from images of shaded surfaces , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[36]  S. R. Lehky,et al.  Neural models of binocular depth perception. , 1990, Cold Spring Harbor symposia on quantitative biology.

[37]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[38]  B. G. Cumming,et al.  Vertical disparities and perception of three-dimensional shape , 1991, Nature.

[39]  B J Richmond,et al.  Concurrent processing and complexity of temporally encoded neuronal messages in visual perception. , 1991, Science.

[40]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[41]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[42]  S Thorpe,et al.  Modulation of neural stereoscopic processing in primate area V1 by the viewing distance. , 1992, Science.

[43]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  J. Stein The representation of egocentric space in the posterior parietal cortex. , 1992, The Behavioral and brain sciences.

[45]  Lawrence K. Cormack,et al.  Disparity tuning in mechanisms of human stereopsis , 1992, Vision Research.

[46]  L K Cormack,et al.  Disparity-tuned channels of the human visual system , 1993, Visual Neuroscience.

[47]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  T. Sejnowski,et al.  Egocentric Spaw Representation in Early Vision , 1993, Journal of Cognitive Neuroscience.

[49]  M F Bradshaw,et al.  Vertical disparities, differential perspective and binocular stereopsis , 1993, Nature.

[50]  Terence D. Sanger,et al.  Theoretical Considerations for the Analysis of Population Coding in Motor Cortex , 1994, Neural Computation.

[51]  Jonathan Baxter,et al.  Learning internal representations , 1995, COLT '95.