Computational reconstitution of spine calcium transients from individual proteins

We have built a stochastic model in the program MCell that simulates Ca2+ transients in spines from the principal molecular components believed to control Ca2+ entry and exit. Proteins, with their kinetic models, are located within two segments of dendrites containing 88 intact spines, centered in a fully reconstructed 6 × 6 × 5 μm3 cube of hippocampal neuropil. Protein components include AMPA- and NMDA-type glutamate receptors, L- and R-type voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, plasma membrane Ca2+ ATPases, smooth endoplasmic reticulum Ca2+ ATPases, immobile Ca2+ buffers, and calbindin. Kinetic models for each protein were taken from published studies of the isolated proteins in vitro. For simulation of electrical stimuli, the time course of voltage changes in the dendritic spine was generated with the desired stimulus in the program NEURON. Voltage-dependent parameters were then continuously re-adjusted during simulations in MCell to reproduce the effects of the stimulus. Nine parameters of the model were optimized within realistic experimental limits by a process that compared results of simulations to published data. We find that simulations in the optimized model reproduce the timing and amplitude of Ca2+ transients measured experimentally in intact neurons. Thus, we demonstrate that the characteristics of individual isolated proteins determined in vitro can accurately reproduce the dynamics of experimentally measured Ca2+ transients in spines. The model will provide a test bed for exploring the roles of additional proteins that regulate Ca2+ influx into spines and for studying the behavior of protein targets in the spine that are regulated by Ca2+ influx.

[1]  G. Briggs,et al.  A Note on the Kinetics of Enzyme Action. , 1925, The Biochemical journal.

[2]  S. K. Boey,et al.  Plasma Membrane , 2005 .

[3]  G. Warren,et al.  Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies , 1984, The Journal of cell biology.

[4]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  D. D. Fraser,et al.  Low-threshold transient calcium current in rat hippocampal lacunosum- moleculare interneurons: kinetics and modulation by neurotransmitters , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  D. Hilgemann,et al.  Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger , 1991, Nature.

[7]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[8]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[9]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[10]  C. Stevens,et al.  Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Wadiche,et al.  Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  N. Spruston,et al.  Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. , 1995, The Journal of physiology.

[13]  T. Stauffer,et al.  Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. , 1995, The Journal of biological chemistry.

[14]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[15]  L. Raeymaekers,et al.  The SERCA3-type of organellar Ca2+pumps , 1995, Bioscience reports.

[16]  M. Kavanaugh,et al.  Kinetics of a human glutamate transporter , 1995, Neuron.

[17]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[18]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[19]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[20]  L. Missiaen,et al.  Distribution of the organellar Ca2+ transport ATPase SERCA2 isoforms in the cat brain , 1996, Brain Research.

[21]  E. F. Stanley,et al.  Single L‐type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. , 1996, The Journal of physiology.

[22]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[23]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[24]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[25]  M. Naraghi,et al.  T-jump study of calcium binding kinetics of calcium chelators. , 1997, Cell calcium.

[26]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[27]  Pankaj Sah,et al.  Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala , 1998, Nature.

[28]  M. Kavanaugh,et al.  Macroscopic and Microscopic Properties of a Cloned Glutamate Transporter/Chloride Channel , 1998, The Journal of Neuroscience.

[29]  S. Vicini,et al.  Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons , 1998, The Journal of physiology.

[30]  P. Rosenberg,et al.  High affinity glutamate transport in rat cortical neurons in culture. , 1998, Molecular pharmacology.

[31]  C. Jahr,et al.  Anion Currents and Predicted Glutamate Flux through a Neuronal Glutamate Transporter , 1998, The Journal of Neuroscience.

[32]  K. P. Lehre,et al.  The Number of Glutamate Transporter Subtype Molecules at Glutamatergic Synapses: Chemical and Stereological Quantification in Young Adult Rat Brain , 1998, The Journal of Neuroscience.

[33]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[34]  Jörg R. P. Geiger,et al.  Glutamate-Mediated Synaptic Excitation of Cortical Interneurons , 1999 .

[35]  M. Elowitz,et al.  Protein Mobility in the Cytoplasm ofEscherichia coli , 1999, Journal of bacteriology.

[36]  R. Weinberg,et al.  Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat , 1999, The Journal of comparative neurology.

[37]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[38]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[39]  K. Harris,et al.  Three-Dimensional Relationships between Hippocampal Synapses and Astrocytes , 1999, The Journal of Neuroscience.

[40]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[41]  I. Módy,et al.  Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+) , 2000, Biophysical journal.

[42]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[43]  K M Harris,et al.  Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines , 2000, Hippocampus.

[44]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[45]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[46]  J. Diamond Neuronal Glutamate Transporters Limit Activation of NMDA Receptors by Neurotransmitter Spillover on CA1 Pyramidal Cells , 2001, The Journal of Neuroscience.

[47]  N. Danbolt Glutamate uptake , 2001, Progress in Neurobiology.

[48]  A. Hyman,et al.  Reconstitution of Physiological Microtubule Dynamics Using Purified Components , 2001, Science.

[49]  Ernesto Carafoli,et al.  Generation, Control, and Processing of Cellular Calcium Signals , 2001, Critical reviews in biochemistry and molecular biology.

[50]  R. Ellis,et al.  Macromolecular crowding: an important but neglected aspect of the intracellular environment. , 2001, Current opinion in structural biology.

[51]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[52]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[53]  Terrence J Sejnowski,et al.  Complexity of calcium signaling in synaptic spines. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[54]  Anastassios V. Tzingounis,et al.  Comparison of Coupled and Uncoupled Currents during Glutamate Uptake by GLT-1 Transporters , 2002, The Journal of Neuroscience.

[55]  Jörg R P Geiger,et al.  Timing and Efficacy of Ca2+ Channel Activation in Hippocampal Mossy Fiber Boutons , 2002, The Journal of Neuroscience.

[56]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[57]  J. Fiala,et al.  Endosomal Compartments Serve Multiple Hippocampal Dendritic Spines from a Widespread Rather Than a Local Store of Recycling Membrane , 2002, The Journal of Neuroscience.

[58]  Karel Svoboda,et al.  Plasticity of calcium channels in dendritic spines , 2003, Nature Neuroscience.

[59]  A. R. Penheiter,et al.  A model for the activation of plasma membrane calcium pump isoform 4b by calmodulin. , 2003, Biochemistry.

[60]  A. R. Penheiter,et al.  A model for the activation of plasma membrane calcium pump isoform 4b by calmodulin. , 2003 .

[61]  W. Walters,et al.  Neuronal glutamate transporter EAAT4 is expressed in astrocytes , 2003, Glia.

[62]  Henry Markram,et al.  Competitive Calcium Binding: Implications for Dendritic Calcium Signaling , 1998, Journal of Computational Neuroscience.

[63]  C. Aoki,et al.  The Glutamate Transporter GLT1a Is Expressed in Excitatory Axon Terminals of Mature Hippocampal Neurons , 2004, The Journal of Neuroscience.

[64]  R. Dingledine,et al.  Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons. , 2004, Journal of neurophysiology.

[65]  M. Vargas-Caballero,et al.  Fast and Slow Voltage-Dependent Dynamics of Magnesium Block in the NMDA Receptor: The Asymmetric Trapping Block Model , 2004, The Journal of Neuroscience.

[66]  E. Gouaux,et al.  Structure of a glutamate transporter homologue from Pyrococcus horikoshii , 2004, Nature.

[67]  L. Dode,et al.  The SERCA 3-type of Organe ! lar Ca 2 + Pumps , 2005 .

[68]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[69]  B. Sabatini,et al.  SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines , 2005, Nature Neuroscience.

[70]  Dirk Dietrich,et al.  Endogenous Ca2+ Buffer Concentration and Ca2+ Microdomains in Hippocampal Neurons , 2005, The Journal of Neuroscience.

[71]  James Sneyd,et al.  A buffering SERCA pump in models of calcium dynamics. , 2006, Biophysical journal.

[72]  Karel Svoboda,et al.  Nonlinear [Ca2+] Signaling in Dendrites and Spines Caused by Activity-Dependent Depression of Ca2+ Extrusion , 2006, The Journal of Neuroscience.

[73]  G. Collingridge,et al.  Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation , 2006, Nature Neuroscience.

[74]  Karel Svoboda,et al.  Molecular Nonlinear [ Ca 2 ] Signaling in Dendrites and Spines Caused by Activity-Dependent Depression of Ca 2 Extrusion , 2006 .

[75]  T. Mazel,et al.  Reaction diffusion modeling of calcium dynamics with realistic ER geometry. , 2006, Biophysical journal.

[76]  B. Sabatini,et al.  Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines , 2007, Neuron.

[77]  R. Weinberg,et al.  Perisynaptic organization of plasma membrane calcium pumps in cerebellar cortex , 2007, The Journal of comparative neurology.

[78]  Balázs Rózsa,et al.  Differential distribution of NCX1 contributes to spine–dendrite compartmentalization in CA1 pyramidal cells , 2007, Proceedings of the National Academy of Sciences.

[79]  A. G. Filoteo,et al.  The Plasma Membrane Ca2+ Pump Isoform 4a Differs from Isoform 4b in the Mechanism of Calmodulin Binding and Activation Kinetics , 2007, Journal of Biological Chemistry.

[80]  K. Harris,et al.  Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus , 2007, Glia.

[81]  Scott B. Baden,et al.  Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces , 2008, SIAM J. Sci. Comput..

[82]  B. Sabatini,et al.  Calcium Signaling in Dendrites and Spines: Practical and Functional Considerations , 2008, Neuron.

[83]  T. Sejnowski,et al.  Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines , 2008, PloS one.

[84]  Ernesto Carafoli,et al.  Calcium pumps in health and disease. , 2009, Physiological reviews.

[85]  Justin P. Kinney,et al.  Investigation of neurotransmitter diffusion in three- dimensional reconstructions of hippocampal neuropil , 2009 .

[86]  R. Weinberg,et al.  A plasma membrane Ca2+ ATPase isoform at the postsynaptic density , 2010, Neuroscience.

[87]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[88]  Gary D Bader,et al.  Functional impact of global rare copy number variation in autism spectrum disorders , 2010, Nature.

[89]  J. Lacaille,et al.  De Novo SYNGAP1 Mutations in Nonsyndromic Intellectual Disability and Autism , 2011, Biological Psychiatry.

[90]  Disorder Working Group Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4 , 2012, Nature Genetics.

[91]  Nelson Spruston,et al.  Synaptic amplification by dendritic spines enhances input cooperativity , 2012, Nature.

[92]  M. Kennedy,et al.  Synaptic Signaling in Learning and Memory. , 2016, Cold Spring Harbor perspectives in biology.

[93]  Eric Gouaux,et al.  X-ray structure of dopamine transporter elucidates antidepressant mechanism , 2013, Nature.

[94]  Terrence J. Sejnowski,et al.  VolRoverN: Enhancing Surface and Volumetric Reconstruction for Realistic Dynamical Simulation of Cellular and Subcellular Function , 2013, Neuroinformatics.

[95]  Josef Spacek,et al.  Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil , 2013, The Journal of comparative neurology.

[96]  Laura J. Scott,et al.  Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways , 2015, Nature Neuroscience.

[97]  S. Dudek,et al.  Regulator of G Protein Signaling 14: A Molecular Brake on Synaptic Plasticity Linked to Learning and Memory. , 2015, Progress in molecular biology and translational science.