Incremental Local Gaussian Regression

Locally weighted regression (LWR) was created as a nonparametric method that can approximate a wide range of functions, is computationally efficient, and can learn continually from very large amounts of incrementally collected data. As an interesting feature, LWR can regress on non-stationary functions, a beneficial property, for instance, in control problems. However, it does not provide a proper generative model for function values, and existing algorithms have a variety of manual tuning parameters that strongly influence bias, variance and learning speed of the results. Gaussian (process) regression, on the other hand, does provide a generative model with rather black-box automatic parameter tuning, but it has higher computational cost, especially for big data sets and if a non-stationary model is required. In this paper, we suggest a path from Gaussian (process) regression to locally weighted regression, where we retain the best of both approaches. Using a localizing function basis and approximate inference techniques, we build a Gaussian (process) regression algorithm of increasingly local nature and similar computational complexity to LWR. Empirical evaluations are performed on several synthetic and real robot datasets of increasing complexity and (big) data scale, and demonstrate that we consistently achieve on par or superior performance compared to current state-of-the-art methods while retaining a principled approach to fast incremental regression with minimal manual tuning parameters.

[1]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[2]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[3]  Stefan Schaal,et al.  Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space , 2000, ICML.

[4]  Andrew W. Moore,et al.  Locally Weighted Learning for Control , 1997, Artificial Intelligence Review.

[5]  Marco F. Huber Recursive Gaussian process: On-line regression and learning , 2014, Pattern Recognit. Lett..

[6]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[7]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[8]  Duy Nguyen-Tuong,et al.  Local Gaussian Process Regression for Real Time Online Model Learning , 2008, NIPS.

[9]  Stefan Schaal,et al.  Efficient Bayesian local model learning for control , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[11]  Carl E. Rasmussen,et al.  Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..

[12]  Giorgio Metta,et al.  Real-time model learning using Incremental Sparse Spectrum Gaussian Process Regression. , 2013, Neural networks : the official journal of the International Neural Network Society.

[13]  Andre Wibisono,et al.  Streaming Variational Bayes , 2013, NIPS.

[14]  Zoubin Ghahramani,et al.  Local and global sparse Gaussian process approximations , 2007, AISTATS.

[15]  Christopher G. Atkeson,et al.  Constructive Incremental Learning from Only Local Information , 1998, Neural Computation.

[16]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[17]  Antti Honkela,et al.  On-line Variational Bayesian Learning , 2003 .

[18]  Stefan Schaal,et al.  Bayesian Kernel Shaping for Learning Control , 2008, NIPS.

[19]  Joaquin Quiñonero Candela,et al.  Incremental Gaussian Processes , 2002, NIPS.

[20]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[21]  M. Wand,et al.  Real-Time Semiparametric Regression , 2012, 1209.3550.

[22]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[23]  Stefan Schaal,et al.  The Bayesian backfitting relevance vector machine , 2004, ICML.

[24]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[25]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[26]  Iain Murray,et al.  A framework for evaluating approximation methods for Gaussian process regression , 2012, J. Mach. Learn. Res..

[27]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[28]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[29]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[30]  I JordanMichael,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008 .