A dictionary learning algorithm for multi-channel neural recordings

Multi-channel neural recording devices are widely used for in vivo neuroscience experiments. Incurred by high signal frequency and large channel numbers, the acquisition rate could be on the order of hundred MB/s, which requires compression before wireless transmission. In this paper, we adopt the Compressed Sensing framework with a simple on-chip implementation. To improve the performance while reducing the number of measurements, we propose a multi-modal structured dictionary learning algorithm that enforces both group sparsity and joint sparsity to learn sparsifying dictionaries for all channels simultaneously. When the data is compressed 50 times, our method can achieve a gain of 4 dB and 10 percentage units over state-of-art approaches in terms of the reconstruction quality and classification accuracy, respectively.

[1]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[3]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[4]  J. Csicsvari,et al.  Intracellular features predicted by extracellular recordings in the hippocampus in vivo. , 2000, Journal of neurophysiology.

[5]  R. Quian Quiroga,et al.  Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering , 2004, Neural Computation.

[6]  Ralph Etienne-Cummings,et al.  Energy-efficient two-stage Compressed Sensing method for implantable neural recordings , 2013, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[7]  Vladimir Stojanovic,et al.  Design and Analysis of a Hardware-Efficient Compressed Sensing Architecture for Data Compression in Wireless Sensors , 2012, IEEE Journal of Solid-State Circuits.

[8]  Refet Firat Yazicioglu,et al.  An Efficient and Compact Compressed Sensing Microsystem for Implantable Neural Recordings , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[9]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[10]  Joel A. Tropp,et al.  Simultaneous sparse approximation via greedy pursuit , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[11]  Awais M. Kamboh,et al.  A Scalable Wavelet Transform VLSI Architecture for Real-Time Signal Processing in High-Density Intra-Cortical Implants , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.