Coding and learning of behavioral sequences

[1]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[2]  B. Kosco Differential Hebbian learning , 1987 .

[3]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[4]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[5]  J. Deuchars,et al.  Temporal and spatial properties of local circuits in neocortex , 1994, Trends in Neurosciences.

[6]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[7]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[8]  J. Lisman,et al.  Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. , 1996, Learning & memory.

[9]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[10]  O Jensen,et al.  Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. , 1996, Learning & memory.

[11]  K. I. Blum,et al.  Functional significance of long-term potentiation for sequence learning and prediction. , 1996, Cerebral cortex.

[12]  C. Moorehead All rights reserved , 1997 .

[13]  M. Hasselmo,et al.  GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. , 1997, Journal of neurophysiology.

[14]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[15]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[16]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[19]  Dean V. Buonomano,et al.  A Neural Network Model of Temporal Code Generation and Position-Invariant Pattern Recognition , 1999, Neural Computation.

[20]  G Buzsáki,et al.  Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel , 1999, The European journal of neuroscience.

[21]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[22]  J L van Hemmen,et al.  Time window control: a model for cerebellar function based on synchronization, reverberation, and time slicing. , 2000, Progress in brain research.

[23]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[24]  Arne D. Ekstrom,et al.  NMDA Receptor Antagonism Blocks Experience-Dependent Expansion of Hippocampal “Place Fields” , 2001, Neuron.

[25]  Carl van Vreeswijk,et al.  Patterns of Synchrony in Neural Networks with Spike Adaptation , 2001, Neural Computation.

[26]  M. Mehta Neuronal Dynamics of Predictive Coding , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[27]  J. Magee Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons. , 2001, Journal of neurophysiology.

[28]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[29]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[30]  Henry Markram,et al.  Spike frequency adaptation and neocortical rhythms. , 2002, Journal of neurophysiology.

[31]  Y. Dan,et al.  Temporal Specificity in the Cortical Plasticity of Visual Space Representation , 2002, Science.

[32]  K. D. Punta,et al.  An ultra-sparse code underlies the generation of neural sequences in a songbird , 2002 .

[33]  Moshe Abeles,et al.  Synfire chain in a balanced network , 2002, Neurocomputing.

[34]  Florian Engert,et al.  Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons , 2002, Nature.

[35]  Jozsef Csicsvari,et al.  Homeostatic maintenance of neuronal excitability by burst discharges in vivo. , 2002, Cerebral cortex.

[36]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[37]  Richard Hans Robert Hahnloser,et al.  An ultra-sparse code underliesthe generation of neural sequences in a songbird , 2002, Nature.

[38]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[39]  G. Spirou,et al.  Optimizing Synaptic Architecture and Efficiency for High-Frequency Transmission , 2002, Neuron.

[40]  Wulfram Gerstner,et al.  Learning Navigational Maps Through Potentiation and Modulation of Hippocampal Place Cells , 2004, Journal of Computational Neuroscience.

[41]  Wulfram Gerstner,et al.  Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns , 1993, Biological Cybernetics.

[42]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: I. Differential Hebbian Learning , 1999, Journal of Computational Neuroscience.

[43]  Michael Recce,et al.  A Temporal Mechanism for Generating the Phase Precession of Hippocampal Place Cells , 2000, Journal of Computational Neuroscience.

[44]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: II. Sensory Image Cancellation , 2000, Journal of Computational Neuroscience.