DNA Computing

Multicellular organisms create complex patterned structures from identical, unreliable components. Learning how to engineer such robust behavior is important to both an improved understanding of computer science and to a better understanding of the natural developmental process. Earlier work by our colleagues and ourselves on amorphous computing demonstrates in simulation how one might build complex patterned behavior in this way. This work reports on our first efforts to engineer microbial cells to exhibit this kind of multicellular pattern directed behavior. We describe a specific natural system, the Lux operon of Vibrio fischeri, which exhibits density dependent behavior using a well characterized set of genetic components. We have isolated, sequenced, and used these components to engineer intercellular communication mechanisms between living bacterial cells. In combination with digitally controlled intracellular genetic circuits, we believe this work allows us to begin the more difficult process of using these communication mechanisms to perform directed engineering of multicellular structures, using techniques such as chemical diffusion dependent behavior. These same techniques form an essential part of our toolkit for engineering with life, and are widely applicable in the field of microbial robotics, with potential applications in medicine, environmental monitoring and control, engineered crop cultivation, and molecular scale fabrication.

[1]  Rudolf Freund Generalized P-Systems , 1999, FCT.

[2]  A. Tomkinson,et al.  Structure and function of mammalian DNA ligases. , 1998, Mutation research.

[3]  G. Steger Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. , 1994, Nucleic acids research.

[4]  Masami Hagiya,et al.  Successive State Transitions with I/O Interface by Molecules , 2000, DNA Computing.

[5]  Rudolf Freund,et al.  Molecular Computing with Generalized Homogeneous P-Systems , 2000, DNA Computing.

[6]  Rudolf Freund,et al.  Generalized P-Systems with Splicing and Cutting/Recombination , 1999, Grammars.

[7]  J. Crutchfield,et al.  Optimizing Epochal Evolutionary Search: Population-Size Dependent Theory , 1998, Machine-mediated learning.

[8]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[9]  Max H. Garzon,et al.  Good encodings for DNA-based solutions to combinatorial problems , 1996, DNA Based Computers.

[10]  C. E. Longfellow,et al.  Thermodynamic and spectroscopic study of bulge loops in oligoribonucleotides. , 1990, Biochemistry.

[11]  A. Tomkinson,et al.  Eukaryotic DNA ligases. , 1990, Mutation research.

[12]  Jon R. Lorsch,et al.  In vitro evolution of new ribozymes with polynucleotide kinase activity , 1994, Nature.

[13]  Gheorghe Paun,et al.  Simulating H Systems by P Systems , 2000, J. Univers. Comput. Sci..

[14]  Jules Moreau,et al.  Molecular Computation by DNA Hairpin Formation , 2000 .

[15]  N C Seeman,et al.  Sequence dependence of branch migratory minima. , 1998, Journal of molecular biology.

[16]  Rani Siromoney,et al.  Circular DNA and Splicing Systems , 1992, ICPIA.

[17]  Akira Suyama DNA chips - Integrated Chemical Circuits for DNA Diagnosis and DNA computers , 1998 .

[18]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[19]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[20]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[21]  David Harlan Wood,et al.  DNA based computers III : DIMACS Workshop, June 23-25, 1997 , 1999 .

[22]  R. Deaton,et al.  A statistical mechanical treatment of error in the annealing biostep of DNA computation , 1999 .

[23]  F. Oaks,et al.  Improved single-strand DNA sizing accuracy in capillary electrophoresis. , 1997, Nucleic acids research.

[24]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[25]  Mitsunori Ogihara Breadth First Search 3SAT Algorithms for DNA Computers , 1996 .

[26]  Richard J. Lipton,et al.  Making DNA computers error resistant , 1996, DNA Based Computers.

[27]  Hiroshi Yoshida,et al.  Solution to 3-SAT by breadth first search , 1999, DNA Based Computers.

[28]  Albert S. Benight,et al.  Theory agrees with experimental thermal denaturation of short DNA restriction fragments , 1981, Nature.

[29]  Joost Engelfriet,et al.  Two-Way Finite State Transducers and Monadic Second-Order Logic , 1999, ICALP.

[30]  U Landegren,et al.  A ligase-mediated gene detection technique. , 1988, Science.

[31]  Lane A. Hemaspaandra Biomolecular computing: recent theoretical and experimental advances , 1999, SIGA.

[32]  Michail G. Lagoudakis,et al.  2D DNA self-assembly for satisfiability , 1999, DNA Based Computers.

[33]  John H. Reif,et al.  Challenges and Applications for Self-Assembled DNA Nanostructures , 2000, DNA Computing.

[34]  D. Gifford,et al.  Automated constraint-based nucleotide sequence selection for DNA computation. , 1999, Bio Systems.

[35]  N. Jonoska,et al.  Three dimensional DNA structures in computing. , 1999, Bio Systems.

[36]  Gheorghe Paun,et al.  Computing with Membranes: An Introduction , 1999, Bull. EATCS.

[37]  F. C. Hennie,et al.  One-Tape, Off-Line Turing Machine Computations , 1965, Inf. Control..

[38]  E. Southern,et al.  Effects of base mismatches on joining of short oligodeoxynucleotides by DNA ligases. , 1997, Nucleic acids research.

[39]  M AdlemanLeonard Molecular computation of solutions to combinatorial problems , 1994 .

[40]  Grzegorz Rozenberg,et al.  Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations , 1997 .

[41]  N. Seeman,et al.  Ligation of DNA Triangles Containing Double Crossover Molecules , 1998 .

[42]  M. Caruthers,et al.  Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis , 1981 .

[43]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[44]  Wolfgang Banzhaf,et al.  Selforganization in a system of binary strings with topological interactions , 1997 .

[45]  D K Gifford,et al.  Design and implementation of computational systems based on programmed mutagenesis. , 1999, Bio Systems.

[46]  David K. Gifford,et al.  The efficiency of sequence-specific separation of DNA mixtures for biological computing , 1997, DNA Based Computers.

[47]  Patrick M. Wright,et al.  The C-terminal Domain of MutY Glycosylase Determines the 7,8-Dihydro-8-oxo-guanine Specificity and Is Crucial for Mutation Avoidance* , 2000, The Journal of Biological Chemistry.

[48]  Nataša Jonoska Constants in factorial and prolongable languages , 1996 .

[49]  Gheorghe Paun,et al.  On the Splicing Operation , 1996, Discret. Appl. Math..

[50]  D. Herschlag,et al.  Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: more isn't always better. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Tony L. Eng Linear DNA self-assembly with hairpins generates linear context-free grammars , 1997, DNA Based Computers.

[52]  E. Southern,et al.  Fidelity of DNA ligation: a novel experimental approach based on the polymerisation of libraries of oligonucleotides. , 1998, Nucleic acids research.

[53]  G. F. Joyce,et al.  Directed evolution of an RNA enzyme. , 1992, Science.

[54]  Erik Winfree,et al.  Experimental progress in computation by self-assembly of DNA tilings , 1999, DNA Based Computers.

[55]  Aviezri S. Fraenkel Protein folding, spin glass and computational complexity , 1997, DNA Based Computers.

[56]  J. Reif,et al.  Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes , 2000 .

[57]  Martyn Amos,et al.  Error-resistant implementation of DNA computations , 1996, DNA Based Computers.

[58]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[59]  Carlo D. Montemagno,et al.  Constructing nanomechanical devices powered by biomolecular motors , 1999 .

[60]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[61]  Ron Weiss,et al.  Engineered Communications for Microbial Robotics , 2000, DNA Computing.

[62]  N. Seeman DNA nanotechnology: novel DNA constructions. , 1998, Annual review of biophysics and biomolecular structure.

[63]  Joost Engelfriet,et al.  Tree Transducers, L Systems, and Two-Way Machines , 1980, J. Comput. Syst. Sci..

[64]  A. Tomkinson,et al.  DNA ligase I from Saccharomyces cerevisiae: physical and biochemical characterization of the CDC9 gene product. , 1992, Biochemistry.

[65]  N C Seeman,et al.  Parallel helical domains in DNA branched junctions containing 5',5' and 3',3' linkages. , 1999, Biochemistry.

[66]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[67]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[68]  Erik Winfree,et al.  A sticker based model for DNA computation , 1996, DNA Based Computers.

[69]  Robert L. Berger The undecidability of the domino problem , 1966 .

[70]  Natasa Jonoska Sofic Shifts with Synchronizing Presentations , 1996, Theor. Comput. Sci..

[71]  J. Crutchfield,et al.  The Evolutionary Unfolding of Complexity , 1999, adap-org/9903001.

[72]  John H. Reif,et al.  Paradigms for Biomolecular Computation , 1998 .

[73]  C. Cantor,et al.  Biophysical chemistry. Part III, The behavior of biologicalmacromolecules , 1980 .

[74]  George D. Bachand,et al.  Constructing biomolecular motor-powered hybrid NEMS devices , 1999, Smart Materials, Nano-, and Micro- Smart Systems.

[75]  N C Seeman,et al.  Assembly and characterization of five-arm and six-arm DNA branched junctions. , 1991, Biochemistry.

[76]  A. Lu,et al.  Detection of single DNA base mutations with mismatch repair enzymes. , 1992, Genomics.

[77]  R. Wartell,et al.  The effect of base sequence on the stability of RNA and DNA single base bulges. , 1999, Biochemistry.

[78]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[79]  Mitsunori Ogihara,et al.  DNA-based parallel computation by "counting" , 1997, DNA Based Computers.

[80]  Dennis Pixton,et al.  Splicing in abstract families of languages , 2000, Theor. Comput. Sci..

[81]  Gérard Berry,et al.  The chemical abstract machine , 1989, POPL '90.

[82]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[83]  Walter Cedeño,et al.  A DNA implementation of the Max 1s problem , 1999 .

[84]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[85]  Ion Petre,et al.  A Normal form for P-Systems , 1999, Bull. EATCS.

[86]  Mitsunori Ogihara,et al.  Biomolecular Computing---A Shape of Computation to Come , 1997 .

[87]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[88]  Masanori Arita,et al.  Solid phase DNA solution to the Hamiltonian path problem , 1997, DNA Based Computers.

[89]  Gheorghe Paun Computing with Membranes: A Variant , 1999 .

[90]  J.,et al.  Using DNA to Solve NP-Complete ProblemsRichard , 1995 .

[91]  James L. Winkler,et al.  Accessing Genetic Information with High-Density DNA Arrays , 1996, Science.

[92]  A. Condon,et al.  Progress toward demonstration of a surface based DNA computation: a one word approach to solve a model satisfiability problem. , 1999, Bio Systems.

[93]  W M Barnes,et al.  PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[94]  G. D. Bachand,et al.  Evaluating Adhesion Strength of Biological Molecules to Nanofabricated Substrates , 1999 .

[95]  Natasa Jonoska,et al.  A molecular computation of the road coloring problem , 1996, DNA Based Computers.

[96]  P W Rothemund,et al.  Using lateral capillary forces to compute by self-assembly , 2000, Proc. Natl. Acad. Sci. USA.

[97]  K Saitou Self-assembling automata: a model of conformational self-assembly. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[98]  J. R. Büchi Turing-machines and the Entscheidungsproblem , 1962 .

[99]  Richard J. Lipton,et al.  DNA²DNA Computations: A Potential "Killer App"? , 1997, ICALP.

[100]  John H. Reif,et al.  Synthesis of Parallel Algorithms , 1993 .

[101]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[102]  Kozo Kinoshita,et al.  Ligation errors in DNA computing. , 1999, Bio Systems.

[103]  Erik Winfree,et al.  The program-size complexity of self-assembled squares (extended abstract) , 2000, STOC '00.

[104]  R. Gray Source Coding Theory , 1989 .

[105]  D. Y. Wu,et al.  Specificity of the nick-closing activity of bacteriophage T4 DNA ligase. , 1989, Gene.

[106]  Eric B. Baum,et al.  DNA sequences useful for computation , 1996, DNA Based Computers.

[107]  Dennis Pixton,et al.  Regularity of Splicing Languages , 1996, Discret. Appl. Math..

[108]  N. Seeman,et al.  Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy , 1999 .

[109]  J Reif,et al.  Micro flow bio-molecular computation. , 1999, Bio Systems.

[110]  Byoung-Tak Zhang,et al.  Molecular Algorithms for Efficient and Reliable DNA Computing , 1998 .

[111]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[112]  V Sgaramella,et al.  A further study of the T4 ligase-catalyzed joining of DNA at base-paired ends. 1972. , 1992, Biotechnology.

[113]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[114]  Erik Winfree,et al.  Universal computation via self-assembly of DNA: Some theory and experiments , 1996, DNA Based Computers.

[115]  N. Seeman,et al.  Modifying the Surface Features of Two-Dimensional DNA Crystals , 1999 .

[116]  George M. Whitesides,et al.  Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption , 1998 .

[117]  Robert M. Corn,et al.  A Multistep Chemical Modification Procedure To Create DNA Arrays on Gold Surfaces for the Study of Protein−DNA Interactions with Surface Plasmon Resonance Imaging , 1999 .

[118]  Yinli Wang,et al.  The Control of Dna Structure and Topology: An Overview , 1994 .

[119]  Max H. Garzon,et al.  Reliability and Efficiency of a DNA-Based Computation , 1998 .

[120]  Zhen Guo,et al.  The power of surface-based DNA computation (extended abstract) , 1997, RECOMB '97.

[121]  Warren D. Smith DNA computers in vitro and vivo , 1995, DNA Based Computers.

[122]  Anne Condon,et al.  Power of surface-based DNA computation , 1997 .

[123]  Guillermo A. Cecchi,et al.  DNA based molecular computation: Template-template interactions in PCR , 1996, DNA Based Computers.

[124]  R J Lipton,et al.  DNA solution of hard computational problems. , 1995, Science.

[125]  A. Blanchard,et al.  High-density oligonucleotide arrays , 1996 .

[126]  T. Head,et al.  Aqueous computing: writing on molecules , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[127]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[128]  T. Gingeras,et al.  Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. , 1991, PCR methods and applications.

[129]  Jack W. Szostak,et al.  An RNA motif that binds ATP , 1993, Nature.

[130]  D. Koenig Theorie Der Endlichen Und Unendlichen Graphen , 1965 .

[131]  John H. Reif,et al.  DNA-based cryptography , 1999, DNA Based Computers.

[132]  Gheorghe Paun,et al.  Membrane Computing with External Output , 2000, Fundam. Informaticae.

[133]  F. Barany Genetic disease detection and DNA amplification using cloned thermostable ligase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[134]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[135]  Grzegorz Rozenberg,et al.  On metalinear ETOL systems , 1980, Fundam. Informaticae.

[136]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[137]  L. Adleman Computing with DNA , 1998 .

[138]  Takashi Yokomori,et al.  YAC: Yet another computation model of self-assembly , 1999, DNA Based Computers.

[139]  C R Cantor,et al.  Enhanced DNA sequencing by hybridization. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[140]  Tero Harju,et al.  Splicing semigroups of dominoes and DNA , 1991, Discret. Appl. Math..

[141]  Carlo D. Montemagno,et al.  Constructing Organic/Inorganic NEMS Devices Powered by Biomolecular Motors , 2000 .

[142]  Erik Winfree,et al.  On the computational power of DNA annealing and ligation , 1995, DNA Based Computers.

[143]  Johann Gasteiger,et al.  Computer‐Assisted Planning of Organic Syntheses: The Second Generation of Programs , 1996 .

[144]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[145]  Nam Quoc Ngo,et al.  The Efficiency of Light-Directed Synthesis of DNA Arrays on Glass Substrates , 1997 .

[146]  N. Seeman DNA engineering and its application to nanotechnology. , 1999, Trends in biotechnology.

[147]  L E Orgel,et al.  Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection. , 1993, Nucleic acids research.

[148]  Kalim U. Mir A restricted genetic alphabet for DNA computing , 1996, DNA Based Computers.

[149]  N. Jonoska,et al.  Ligation experiments in computing with DNA , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[150]  Eric Bach,et al.  DNA Models and Algorithms for NP-Complete Problems , 1998, J. Comput. Syst. Sci..

[151]  H. Echols,et al.  Fidelity mechanisms in DNA replication. , 1991, Annual review of biochemistry.

[152]  D. J. Brown,et al.  Purification of synthetic DNA. , 1992, Methods in enzymology.

[153]  Stéphane Grumbach,et al.  Compression of DNA sequences , 1993, [Proceedings] DCC `93: Data Compression Conference.

[154]  A. Condon,et al.  Surface-based DNA computing operations: DESTROY and READOUT. , 1999, Bio Systems.

[155]  Masami Hagiya,et al.  Towards parallel evaluation and learning of Boolean μ-formulas with molecules , 1997, DNA Based Computers.

[156]  A D Ellington,et al.  The fidelity of template-directed oligonucleotide ligation and its relevance to DNA computation. , 1998, Nucleic acids research.

[157]  N. Seeman,et al.  Antiparallel DNA Double Crossover Molecules As Components for Nanoconstruction , 1996 .

[158]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[159]  V. Bailly,et al.  Nicks 3' or 5' to AP sites or to mispaired bases, and one-nucleotide gaps can be sealed by T4 DNA ligase. , 1987, Nucleic acids research.

[160]  E. Winfree Simulations of Computing by Self-Assembly , 1998 .

[161]  J. McCaskill,et al.  Spatially resolved in vitro molecular ecology. , 1997, Biophysical chemistry.

[162]  T. D. Dunbar,et al.  Directed Self-Assembly to Create Molecular Terraces with Molecularly Sharp Boundaries in Organic Monolayers , 1999 .

[163]  Grzegorz Rozenberg,et al.  String Tile Models for DNA Computing by Self-Assembly , 2000, DNA Computing.

[164]  L F Landweber,et al.  Molecular computation: RNA solutions to chess problems , 2000, Proc. Natl. Acad. Sci. USA.

[165]  Rudolf Freund,et al.  Test tube systems: when two tubes are enough , 1999, Developments in Language Theory.

[166]  Ian H. Witten,et al.  Protein is incompressible , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[167]  L. Karl DNA computing: Arrival of biological mathematics , 1997 .

[168]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[169]  Joost Engelfriet,et al.  MSO definable string transductions and two-way finite-state transducers , 1999, TOCL.

[170]  Harvey Rubin,et al.  Looking for the DNA killer app , 1996, Nature Structural Biology.

[171]  G Paun,et al.  Computing with Membranes (P Systems): Twenty Six Research Topics , 2000 .

[172]  Erik Winfree,et al.  On applying molecular computation to the data encryption standard , 1999, DNA Based Computers.

[173]  S. Shuman,et al.  Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. , 1995, Biochemistry.

[174]  Richard J. Lipton,et al.  Breaking DES using a molecular computer , 1995, DNA Based Computers.

[175]  P. Yager,et al.  Microfluidic Diffusion-Based Separation and Detection , 1999, Science.

[176]  Gheorghe Paun,et al.  Membrane computing based on splicing , 1999, DNA Based Computers.

[177]  Grzegorz Rozenberg,et al.  On ET0L Systems of Finite Index , 1978, Inf. Control..

[178]  David Loewenstern,et al.  Significantly Lower Entropy Estimates for Natural DNA Sequences , 1999, J. Comput. Biol..

[179]  W. Stemmer DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[180]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[181]  Ramamohan Paturi,et al.  Circuits, cnfs, and satisfiability , 1998 .

[182]  James P. Crutchfield,et al.  Statistical Dynamics of the Royal Road Genetic Algorithm , 1999, Theor. Comput. Sci..

[183]  R. Deaton,et al.  A DNA based implementation of an evolutionary search for good encodings for DNA computation , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[184]  David Harlan Wood,et al.  A new DNA separation technique with a low error rate , 1997, DNA Based Computers.

[185]  P. Modrich,et al.  Mechanisms and biological effects of mismatch repair. , 1991, Annual review of genetics.

[186]  V. Pless Introduction to the Theory of Error-Correcting Codes , 1991 .

[187]  Erik Winfree,et al.  On the Reduction of Errors in DNA Computation , 1999, J. Comput. Biol..

[188]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[189]  J. McCaskill,et al.  Cooperative amplification of templates by cross-hybridization (CATCH). , 1997, European journal of biochemistry.

[190]  I. Lehman DNA ligase: structure, mechanism, and function. , 1974, Science.

[191]  Natasa Jonoska,et al.  Creating 3-dimensional graph structures with DNA , 1997, DNA Based Computers.

[192]  John H. Reif,et al.  Computationally Inspired Biotechnologies: Improved DNA Synthesis and Associative Search Using Error-Correcting Codes and Vector-Quantization , 2000, DNA Computing.

[193]  Michael C. Pirrung,et al.  Step-and-repeat photopatterning of protein features using caged-biotin-BSA: Characterization and resolution , 1998 .

[194]  Qinghua Liu,et al.  A Surface-Based Approach to DNA Computation , 1998, J. Comput. Biol..

[195]  J. SantaLucia,et al.  Thermodynamics and NMR of internal G.T mismatches in DNA. , 1997, Biochemistry.