On the Benefits of Populations for Noisy Optimization

It is known that, in the absence of noise, no improvement in local performance can be gained from retaining candidate solutions other than the best one. Yet, it has been shown experimentally that, in the presence of noise, operating with a non-singular population of candidate solutions can have a marked and positive effect on the local performance of evolution strategies. So as to determine the reasons for the improved performance, we have studied the evolutionary dynamics of the (, )-ES in the presence of noise. Considering a simple, idealized environment, we have developed a moment-based approach that uses recent results involving concomitants of selected order statistics. This approach yields an intuitive explanation for the performance advantage of multi-parent strategies in the presence of noise. It is then shown that the idealized dynamic process considered does bear relevance to optimization problems in high-dimensional search spaces.

[1]  Magnus Rattray,et al.  Noisy Fitness Evaluation in Genetic Algorithms and the Dynamics of Learning , 1996, FOGA.

[2]  A I Oyman,et al.  Analysis of the (1, )-ES on the Parabolic Ridge , 2000, Evolutionary Computation.

[3]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[4]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[5]  Hans-Georg Beyer,et al.  Local performance of the (1 + 1)-ES in a noisy environment , 2002, IEEE Trans. Evol. Comput..

[6]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[7]  Volker Nissen,et al.  Optimization with Noisy Function Evaluations , 1998, PPSN.

[8]  Hans-Georg Beyer,et al.  Expected sample moments of concomitants of selected order statistics , 2005, Stat. Comput..

[9]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[10]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[11]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[12]  Hans-Georg Beyer,et al.  Investigation of the (/spl mu/, /spl lambda/)-ES in the presence of noise , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[13]  H. Beyer,et al.  Noisy Local Optimization with Evolution Strategies , 2002 .

[14]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[15]  Hans-Georg Beyer,et al.  Local Performance of the (μ/μ, μ)-ES in a Noisy Environment , 2000, FOGA.

[16]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[17]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[18]  Haikady N. Nagaraja,et al.  18 Concomitants of order statistics , 1998, Order statistics.

[19]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[20]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.

[21]  Hans-Georg Beyer,et al.  On the Dynamics of EAs without Selection , 1998, FOGA.