Is There Something Out There? Inferring Space from Sensorimotor Dependencies

This letter suggests that in biological organisms, the perceived structure of reality, in particular the notions of body, environment, space, object, and attribute, could be a consequence of an effort on the part of brains to account for the dependency between their inputs and their outputs in terms of a small number of parameters. To validate this idea, a procedure is demonstrated whereby the brain of a (simulated) organism with arbitrary input and output connectivity can deduce the dimensionality of the rigid group of the space underlying its input-output relationship, that is, the dimension of what the organism will call physical space.

[1]  Tom Minka,et al.  Automatic Choice of Dimensionality for PCA , 2000, NIPS.

[2]  Joshua B. Tenenbaum,et al.  Mapping a Manifold of Perceptual Observations , 1997, NIPS.

[3]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[4]  A Berthoz,et al.  A neural network model of sensoritopic maps with predictive short-term memory properties. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Stefan Schaal,et al.  Fast and efficient incremental learning for high-dimensional movement systems , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  J. Nadal,et al.  Optimal unsupervised learning , 1994 .

[7]  Rajesh P. N. Rao,et al.  Learning Lie Groups for Invariant Visual Perception , 1998, NIPS.

[8]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[9]  François Laudenbach Calcul différentiel et intégral , 2000 .

[10]  Michael I. Jordan,et al.  Mixtures of Probabilistic Principal Component Analyzers , 2001 .

[11]  D. Wolpert,et al.  Abnormalities in the awareness of action , 2002, Trends in Cognitive Sciences.

[12]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[13]  Luc Van Gool,et al.  Vision and Lie's approach to invariance , 1995, Image Vis. Comput..

[14]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[15]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[16]  H. Poincaré La science et l'hypothèse , 1968 .

[17]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[18]  Stefan Schaal,et al.  Memory-based neural networks for robot learning , 1995, Neurocomputing.

[19]  Maja J. Mataric,et al.  Automated Derivation of Primitives for Movement Classification , 2000, Auton. Robots.

[20]  E Guigon,et al.  Recoding arm position to learn visuomotor transformations. , 2001, Cerebral cortex.

[21]  D. Wolpert,et al.  The cerebellum is involved in predicting the sensory consequences of action , 1999, Neuroreport.

[22]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[23]  Terence D. Sanger Optimal Unsupervised Learning in Feedforward Neural Networks , 1989 .

[24]  W. L. Burke Applied Differential Geometry , 1985 .