The long-term memory prediction by multiscale decomposition

Abstract This paper deals with the problem of long-term memory time-seri es prediction. Traditionally, this type of prediction is achieved using the fractionally integrated ARMA models. The method presented here, is based on the multiscale filtering which iteratively decomposes a series into a trend and a hierarchy of details that are stationary and contain only short memory. Thus, the obtained series are modeled with classical ARMA models. The advantage of this method is that it overcomes the tricky problem of the fractional integration parameter estimation. The statistical properties of the obtained series are studied and the use of multichannel autoregressive models is justified when the moving average part does not exist. Results obtained through the use of both simulated and real-life series show the efficiency of the approach.

[1]  A. Neumaier,et al.  Multivariate Autoregressive and Ornstein-Uhlenbeck Processes: Estimates for Order, Parameters, Spect , 1997 .

[2]  Arnold Neumaier,et al.  Algorithm: Arfit | a Matlab Package for Estimation and Spectral Decomposition of Multivariate Autoregressive Models , 2007 .

[3]  Emmanuel Le Tavernier Méthodes d'analyse des propriétés d'auto-affinité des processus comportant des composantes spectrales en 1/f , 1998 .

[4]  D. Veitch Wavelet Analysis of Long Range Dependent Traac , 1998 .

[5]  Clive W. J. Granger,et al.  New Classes of Time Series Models , 1978 .

[6]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[7]  V. Reisen,et al.  ESTIMATION OF THE FRACTIONAL DIFFERENCE PARAMETER IN THE ARIMA(p, d, q) MODEL USING THE SMOOTHED PERIODOGRAM , 1994 .

[8]  Frederic Zagury Exemples de l'importance de l'interaction champs de rayonnement-matiere pour la comprehension de la structure du milieu interstellaire proche , 1996 .

[9]  P. Abry,et al.  Wavelets, spectrum analysis and 1/ f processes , 1995 .

[10]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[11]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[12]  N. Jeremy Usdin,et al.  Discrete Simulation of Colored Noise and Stochastic Processes and llf" Power Law Noise Generation , 1995 .

[13]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[14]  N. Kasdin Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation , 1995, Proc. IEEE.

[15]  P. Abry,et al.  The wavelet based synthesis for fractional Brownian motion , 1996 .

[16]  Yoshihiro Yajima,et al.  On Estimation of a Regression Model with Long-Memory Stationary Errors , 1988 .

[17]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[18]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[19]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[20]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..