Toward High-Fidelity Telepresence in Space and Surgery Robotics

High-fidelity telepresence is considered to be a key subject for the development of advanced space and surgery robotic systems. The emphasis of this paper are the key challenges like multimodal data servicing, bilateral and shared control concepts, and kinesthetic feedback devices. These technologies are the basic principles in the development of advanced space and surgery applications. Beside these technologies, advanced mechatronic systems are required as shown within this paper. The applicability of the high-fidelity telepresence concept is explored by selected space and surgery scenarios.

[1]  Klaus Landzettel,et al.  ROKVISS - towards Telepresence Control in Advanced Space Missions , 2003 .

[2]  Alin Albu-Schäffer,et al.  Parameter identification and passivity based joint control for a 7 DOF torque controlled light weight robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[3]  Blake Hannaford,et al.  Time domain passivity control of haptic interfaces , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[4]  Samad Hayati,et al.  Design and implementation of a robot control system with traded and shared control capability , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[5]  Blake Hannaford,et al.  Time domain passivity control for 6 degrees of freedom haptic displays , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[6]  Alin Albu-Schäffer,et al.  On a new generation of torque controlled light-weight robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  Blake Hannaford,et al.  Time domain passivity control with reference energy behavior , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[8]  G. Hirzinger,et al.  Flexible multimodal telepresent assembly using a generic interconnection framework , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  A. Watson,et al.  OMG (Object Management Group) architecture and CORBA (common object request broker architecture) specification , 2002 .

[10]  G. Hirzinger,et al.  Real-time visual servoing for laparoscopic surgery. Controlling robot motion with color image segmentation , 1997, IEEE Engineering in Medicine and Biology Magazine.

[11]  Petar V. Kokotovic,et al.  An integral manifold approach to the feedback control of flexible joint robots , 1987, IEEE J. Robotics Autom..

[12]  Yulun Wang,et al.  Robotic surgery - the transatlantic case , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[13]  Min-Seok Kim,et al.  복강경 수술용 도구의 실시간 영상 추적 및 복강경 조종기의 지능형 제어 방법 = Real-time visual servoing for laparoscopic surgery , 2003 .

[14]  Alin Albu-Schäffer,et al.  State feedback controller for flexible joint robots: a globally stable approach implemented on DLR's light-weight robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[15]  Tsuneo Yoshikawa,et al.  Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[16]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[17]  Thomas B. Sheridan,et al.  Telerobotics, Automation, and Human Supervisory Control , 2003 .

[18]  Gerd Hirzinger,et al.  DLR hand II: hard- and software architecture for information processing , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  B Kiaii,et al.  Closed chest CABG on the beating heart with a computer-enhanced articulating system: case report. , 2001, The heart surgery forum.

[20]  Songmin Jia,et al.  Distributed telecare robotic systems using CORBA as a communication architecture , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[21]  M. Spong Modeling and Control of Elastic Joint Robots , 1987 .

[22]  T. Ortmaier,et al.  Aufbauoptimierung für Roboter in medizinischen Anwendungen , 2002 .

[23]  Michele Amoretti,et al.  A software framework based on real-time CORBA for telerobotic systems , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Thomas Unterschütz,et al.  Telekommunikationsnetze in CORBA-basierten Echtzeit-Systemen am Beispiel wirklichkeitsnaher Telepräsenzanwendungen , 2001, Kommunikation in Verteilten Systemen.

[25]  Martin Gröger,et al.  Robust Motion Estimation in Robotic Surgery on the Beating Heart , 2002 .

[26]  Richard A. Volz,et al.  Tele-autonomous systems: Methods and architectures for intermingling autonomous and telerobotic technology , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[27]  Martin Buss,et al.  Control Problems in Multi-Modal Telepresence Systems , 1999 .

[28]  Tobias Ortmaier,et al.  Teleoperation Concepts in Minimal Invasive Surgery , 2001 .

[29]  Hong Liu,et al.  A mechatronics approach to the design of light-weight arms and multifingered hands , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[30]  Gerd Hirzinger,et al.  ROTEX-the first remotely controlled robot in space , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[31]  John V. Draper,et al.  Teleoperators for advanced manufacturing: Applications and human factors challenges , 1995 .

[32]  Wolfgang Emmerich,et al.  Software engineering and middleware: a roadmap , 2000, ICSE '00.

[33]  Gerd Hirzinger,et al.  Task directed programming of sensor based robots , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).