Single-server queues with spatially distributed arrivals

Consider a queueing system where customers arrive at a circle according to a homogeneous Poisson process. After choosing their positions on the circle, according to a uniform distribution, they wait for a single server who travels on the circle. The server's movement is modelled by a Brownian motion with drift. Whenever the server encounters a customer, he stops and serves this customer. The service times are independent, but arbitrarily distributed. The model generalizes the continuous cyclic polling system (the diffusion coefficient of the Brownian motion is zero in this case) and can be interpreted as a continuous version of a Markov polling system. Using Tweedie's lemma for positive recurrence of Markov chains with general state space, we show that the system is stable if and only if the traffic intensity is less than one. Moreover, we derive a stochastic decomposition result which leads to equilibrium equations for the stationary configuration of customers on the circle. Steady-state performance characteristics are determined, in particular the expected number of customers in the system as seen by a travelling server and at an arbitrary point in time.

[1]  Dirk P. Kroese,et al.  A continuous polling system with general service times , 1991 .

[2]  Bernd Meister,et al.  Waiting Lines and Times in a System with Polling , 1974, JACM.

[3]  Masakiyo Miyazawa,et al.  Rate conservation laws: A survey , 1994, Queueing Syst. Theory Appl..

[4]  Wojciech Szpankowski,et al.  Stability of token passing rings , 1992, Queueing Syst. Theory Appl..

[5]  J. Kingman,et al.  Random walks with stationary increments and renewal theory , 1979 .

[6]  Volker Schmidt,et al.  Queueing systems on a circle , 1993, ZOR Methods Model. Oper. Res..

[7]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[8]  Robert B. Cooper,et al.  Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations , 1985, Oper. Res..

[9]  R. Tweedie The existence of moments for stationary Markov chains , 1983, Journal of Applied Probability.

[10]  Onno J. Boxma,et al.  Waiting Times in Polling Systems with Markovian Server Routing , 1989, MMB.

[11]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[12]  Edward G. Coffman,et al.  Polling and greedy servers on a line , 1987, Queueing Syst. Theory Appl..

[13]  Jacques Resing,et al.  Polling systems and multitype branching processes , 1993, Queueing Syst. Theory Appl..

[14]  Theodore E. Tedijanto,et al.  Exact Results for the Cyclic-Service Queue with a Bernoulli Schedule , 1990, Perform. Evaluation.

[15]  Martin Eisenberg,et al.  Queues with Periodic Service and Changeover Time , 1972, Oper. Res..

[16]  Ronald W. Wolff,et al.  Poisson Arrivals See Time Averages , 1982, Oper. Res..

[17]  Onno Boxma,et al.  Pseudo-conservation laws in cyclic-service systems , 1986 .

[18]  Edward G. Coffman,et al.  Continuous Polling on Graphs , 1993 .

[19]  R. B. Cooper,et al.  Application of decomposition principle in M/G/1 vacation model to two continuum cyclic queueing models — Especially token-ring LANs , 1985, AT&T Technical Journal.

[20]  E. Nummelin,et al.  A splitting technique for Harris recurrent Markov chains , 1978 .

[21]  S. W Fuhrmann,et al.  Symmetric queues served in cyclic order , 1985 .

[22]  R. Tweedie,et al.  Strengthening ergodicity to geometric ergodicity for markov chains , 1994 .

[23]  Robert B. Cooper,et al.  Queues served in cyclic order , 1969 .

[24]  E. CastroPeter,et al.  Infinitely Divisible Point Processes , 1982 .

[25]  W. D. Ray Infinitely Divisible Point Processes , 1979 .

[26]  高木 英明,et al.  Analysis of polling systems , 1986 .

[27]  R. Wolff Work-conserving priorities , 1970 .

[28]  Ronald W. Wolff,et al.  A Review of Regenerative Processes , 1993, SIAM Rev..

[29]  Zhen Liu,et al.  Stability, monotonicity and invariant quantities in general polling systems , 1992, Queueing Syst. Theory Appl..

[30]  Volker Schmidt,et al.  Light-Traffic Analysis for Queues with Spatially Distributed Arrivals , 1996, Math. Oper. Res..

[31]  Leonard Kleinrock,et al.  The Analysis of Random Polling Systems , 1988, Oper. Res..

[32]  R. Schassberger,et al.  Ergodicity of a polling network , 1994 .

[33]  R. Tweedie Criteria for classifying general Markov chains , 1976, Advances in Applied Probability.

[34]  S. Foss,et al.  Polling on a space with general arrival and service time distribution , 1997, Oper. Res. Lett..

[35]  Christine Fricker,et al.  Monotonicity and stability of periodic polling models , 1994, Queueing Syst. Theory Appl..

[36]  Julian Keilson,et al.  OSCILLATING RANDOM WALK MODELS FOR GI/G/1 VACATION , 1986 .

[37]  K. Athreya,et al.  A New Approach to the Limit Theory of Recurrent Markov Chains , 1978 .

[38]  Eitan Altman,et al.  Queueing in space , 1994, Advances in Applied Probability.

[39]  Tom W. Berrie,et al.  Queues and Point Processes , 1983 .

[40]  Catherine Rosenberg,et al.  On pathwise rate conservation for a class of semi-martingales , 1993 .

[41]  Eitan Altman,et al.  Cyclic Bernoulli polling , 1993, ZOR Methods Model. Oper. Res..

[42]  Karl Sigman,et al.  Rate Conservation Law for Stationary Semimartingales , 1993, Probability in the Engineering and Informational Sciences.

[43]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[44]  Donald L. Snyder,et al.  Random point processes , 1975 .

[45]  V. Schmidt,et al.  Queues and Point Processes , 1983 .

[46]  H. Thorisson Construction of a stationary regenerative process , 1992 .

[47]  R. Syski,et al.  Random Walks With Stationary Increments and Renewal Theory , 1982 .

[48]  Dimitris Bertsimas,et al.  A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane , 1991, Oper. Res..

[49]  P. J. Kuehn,et al.  Multiqueue systems with nonexhaustive cyclic service , 1979, The Bell System Technical Journal.

[50]  T. Lindvall Lectures on the Coupling Method , 1992 .