Free Energy Minimization by Simulated Annealing with Applications to Lithospheric Slabs and Mantle Plumes

Abstract—An optimization algorithm based upon the method of simulated annealing is of utility in calculating equilibrium phase assemblages as functions of pressure, temperature, and chemical composi tion. Operating by analogy to the statistical mechanics of the chemical system, it is applicable both to problems of strict chemical equilibrium and to problems involving metastability. The method reproduces known phase diagrams and illustrates the expected thermal deflection of phase transitions in thermal models of subducting lithospheric slabs and buoyant mantle plumes. It reveals temperature-induced changes in phase transition sharpness and the stability of Fe-rich γ phase within an α+γ field in cold slab thermal models, and it suggests that transitions such as the possible breakdown of silicate perovskite to mixed oxides can amplify velocity anomalies.

[1]  D. Yuen,et al.  Layered convection induced by phase transitions , 1985 .

[2]  C. Bina,et al.  Phase transition buoyancy contributions to stresses in subducting lithosphere , 1996 .

[3]  Klaus Mosegaard,et al.  A SIMULATED ANNEALING APPROACH TO SEISMIC MODEL OPTIMIZATION WITH SPARSE PRIOR INFORMATION , 1991 .

[4]  S. Saxena Computation of Multicomponent Phase Equilibria , 1982 .

[5]  Toshihiro Suzuki,et al.  Thermodynamic properties of α‐quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures , 1995 .

[6]  Anatoly B. Belonoshko,et al.  Molecular dynamics of NaCl (B1 and B2) and MgO (B1) melting: Two-phase simulation , 1996 .

[7]  A. Navrotsky,et al.  Calorimetric study of the coesite-stishovite transformation and calculation of the phase boundary , 1996 .

[8]  M. Sambridge,et al.  Genetic algorithms in seismic waveform inversion , 1992 .

[9]  H. Mao,et al.  High-Temperature Phase Transition and Dissociation of (Mg, Fe)SiO3 Perovskite at Lower Mantle Pressures , 1995, Science.

[10]  H. Mao,et al.  Experimental determination of element partitioning and calculation of phase relations in the MgO‐FeO‐SiO2 system at high pressure and high temperature , 1991 .

[11]  L. Ingber Draft of Paper Appearing In: %a L. Ingber %t Very Fast Simulated Re-annealing %j Mathl. Comput. Modelling %v 12 Very Fast Simulated Re-annealing Very Fast Re-annealing -2- Lester Ingber , 1989 .

[12]  G Eriksson,et al.  Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium compositions in multiphase systems. | Article Information | J-GLOBAL , 1975 .

[13]  Charles R. Ross,et al.  Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes , 1994 .

[14]  Y. Syono,et al.  High-pressure research : application to earth and planetary sciences , 1992 .

[15]  L N Frazer,et al.  Rapid Determination of the Critical Temperature in Simulated Annealing Inversion , 1990, Science.

[16]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[17]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[18]  Bernard J. Wood,et al.  Subduction zone thermal structure and mineralogy and their relationship to seismic wave reflections and conversions at the slab/mantle interface , 1989 .

[19]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[20]  Thomas H. Brown,et al.  The computation of chemical equilibrium in complex systems containing non-ideal solutions , 1987 .

[21]  Surendra K. Saxena,et al.  Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO‐SiO2 at high pressure and high temperature , 1990 .

[22]  L. Kellogg,et al.  The effect of temperature dependent viscosity on the structure of new plumes in the mantle: Results of a finite element model in a spherical, axisymmetric shell , 1997 .

[23]  C. Bina,et al.  Frequency dependence of the visibility and depths of mantle seismic discontinuities , 1994 .

[24]  A. Tarantola,et al.  Monte Carlo estimation and resolution analysis of seismic background velocities , 1991 .

[25]  B. Wood,et al.  Olivine‐spinel transitions: Experimental and thermodynamic constraints and implications for the nature of the 400‐km seismic discontinuity , 1987 .

[26]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[27]  B. Wood Thermodynamics of multicomponent systems containing several solid solutions , 1987 .

[28]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[29]  L. Ingber Very fast simulated re-annealing , 1989 .

[30]  Emile A. Okal,et al.  Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere , 1996 .

[31]  Adam M. Dziewonski,et al.  Parametrically simple earth models consistent with geophysical data , 1975 .

[32]  H. Green,et al.  The Mechanics of Deep Earthquakes , 1995 .

[33]  R. Powell,et al.  An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program , 1988 .

[34]  J. Weare,et al.  A chemical equilibrium algorithm for highly non-ideal multiphase systems: Free energy minimization , 1987 .

[35]  E. R. Oxburgh,et al.  Thermal structure of the moon. , 1972 .

[36]  B. Wood,et al.  A thermodynamic model for subsolidus equilibria in the system CaOMgOAl2O3SiO2 , 1984 .

[37]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[38]  P. Silver,et al.  Interpretation of SKS-waves using samples from the subcontinental lithosphere , 1993 .

[39]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[40]  Computation of chemical equilibrium compositions II , 1964 .

[41]  D. Yuen,et al.  The interaction of a subducting lithospheric slab with a chemical or phase boundary , 1984 .

[42]  Philip E. Gill,et al.  Practical optimization , 1981 .

[43]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes , 1987 .

[44]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[45]  G. Eriksson,et al.  ChemSage—A computer program for the calculation of complex chemical equilibria , 1990 .

[46]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[47]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[48]  Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection , 1998 .

[49]  A note on the sensitivity of mantle convection models to composition‐dependent phase relations , 1995 .

[50]  Roger G. Burns,et al.  Kinetics of high-pressure phase transformations: Implications to the evolution of the olivine → spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle , 1976 .

[51]  I. Sacks,et al.  Thermal and dynamical evolution of the upper mantle in subduction zones , 1997 .

[52]  Thomas A. Jones,et al.  Calculation of mass transfer in geochemical processes involving aqueous solutions , 1970 .

[53]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[54]  M. Ghiorso Chemical mass transfer in magmatic processes , 1985 .

[55]  S. Saxena Earth mineralogical model: Gibbs free energy minimization computation in the system MgOFeOSiO2 , 1996 .

[56]  O. Fabrichnaya Thermodynamic data for phases in the FeO-MgO-SiO2 system and phase relations in the mantle transition zone , 1995 .

[57]  L. Dubrovinsky,et al.  A new high-pressure silica phase obtained by molecular dynamics , 1996 .

[58]  D Cvijovicacute,et al.  Taboo search: an approach to the multiple minima problem. , 1995, Science.

[59]  S. Saxena,et al.  Stability of Perovskite (MgSiO3) in the Earth's Mantle , 1996, Science.

[60]  D. Turcotte,et al.  Structure of the olivine‐spinel phase boundary in the descending lithosphere , 1971 .

[61]  P. Molnar,et al.  Distribution of stresses in the descending lithosphere from a global survey of focal‐mechanism solutions of mantle earthquakes , 1971 .