Formation of receptive fields in realistic visual environments according to the Bienenstock, Cooper, and Munro (BCM) theory.

The Bienenstock, Cooper, and Munro (BCM) theory of synaptic plasticity has successfully reproduced the development of orientation selectivity and ocular dominance in kitten visual cortex in normal, as well as deprived, visual environments. To better compare the consequences of this theory with experiment, previous abstractions of the visual environment are replaced in this work by real visual images with retinal processing. The visual environment is represented by 24 gray-scale natural images that are shifted across retinal fields. In this environment, the BCM neuron develops receptive fields similar to the fields of simple cells found in kitten striate cortex. These fields display adjacent excitatory and inhibitory bands when tested with spot stimuli, orientation selectivity when tested with bar stimuli, and spatial-frequency selectivity when tested with sinusoidal gratings. In addition, their development in various deprived visual environments agrees with experimental results.