Large-scale river network modeling using Graph Neural Networks

In this study, we investigate large-scale, spatially distributed rainfall-runoff modeling using DL models. Our setup consists of two independent model components: One model for the runoffgeneration process and one for the routing. The former is an LSTM-based model that predicts the discharge contribution of each sub-catchment in a river network. The latter is a Graph Neural Network (GNN) that routes the water along the river network network in hierarchical order. The first part is set up to simulate unimpaired runoff for every sub-catchment. Then, the GNN routes the water through the river network, incorporating human influences such as river regulations through hydropower plants. The main focus is to investigate different model architectures for the GNN that are able to learn the routing task, as well as potentially accounting for human influence. We consider models based on 1D-convolution, attention modules, as well as state-aware time series models.