Block sparse representations of tensors using Kronecker bases

In this paper, we consider sparse representations of multidimensional signals (tensors) by generalizing the one-dimensional case (vectors). A new greedy algorithm, namely the Tensor-OMP algorithm, is proposed to compute a block-sparse representation of a tensor with respect to a Kronecker basis where the non-zero coefficients are restricted to be located within a sub-tensor (block). It is demonstrated, through simulation examples, the advantage of considering the Kronecker structure together with the block-sparsity property obtaining faster and more precise sparse representations of tensors compared to the case of applying the classical OMP (Orthogonal Matching Pursuit).

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Mohamed-Jalal Fadili,et al.  Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.

[3]  Richard G. Baraniuk,et al.  Kronecker Compressive Sensing , 2012, IEEE Transactions on Image Processing.

[4]  Deanna Needell,et al.  Topics in Compressed Sensing , 2009, ArXiv.

[5]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[6]  Adrian Stern,et al.  Compressed Imaging With a Separable Sensing Operator , 2009, IEEE Signal Processing Letters.

[7]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[8]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[9]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[10]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[11]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..