Nonnegative Tensor Train Decompositions for Multi-domain Feature Extraction and Clustering

Tensor train (TT) is one of the modern tensor decomposition models for low-rank approximation of high-order tensors. For nonnegative multiway array data analysis, we propose a nonnegative TT (NTT) decomposition algorithm for the NTT model and a hybrid model called the NTT-Tucker model. By employing the hierarchical alternating least squares approach, each fiber vector of core tensors is optimized efficiently at each iteration. We compared the performances of the proposed method with a standard nonnegative Tucker decomposition (NTD) algorithm by using benchmark data sets including event-related potential data and facial image data in multi-domain feature extraction and clustering tasks. It is illustrated that the proposed algorithm extracts physically meaningful features with relatively low storage and computational costs compared to the standard NTD model.

[1]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.

[2]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[3]  Tapani Ristaniemi,et al.  Multi-Domain Feature Extraction for Small Event-Related potentials through Nonnegative Multi-Way Array Decomposition from Low Dense Array EEG , 2013, Int. J. Neural Syst..

[4]  Andrzej Cichocki,et al.  Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization , 2007, ICA.

[5]  Andrzej Cichocki,et al.  Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification , 2011, Neurocomputing.

[6]  Xiaofeng Gong,et al.  Tensor decomposition of EEG signals: A brief review , 2015, Journal of Neuroscience Methods.

[7]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[8]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[9]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[10]  Boris N. Khoromskij,et al.  Two-Level QTT-Tucker Format for Optimized Tensor Calculus , 2013, SIAM J. Matrix Anal. Appl..

[11]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..