A component lasso

We propose a new sparse regression method called the component lasso, based on a simple idea. The method uses the connected-components structure of the sample covariance matrix to split the problem into smaller ones. It then solves the subproblems separately, obtaining a coefficient vector for each one. Then, it uses non-negative least squares to recombine the different vectors into a single solution. This step is useful in selecting and reweighting components that are correlated with the response. Simulated and real data examples show that the component lasso can outperform standard regression methods such as the lasso and elastic net, achieving a lower mean squared error as well as better support recovery.

[1]  Discussion of ‘Correlated variables in regression: Clustering and sparse estimation’ by Peter Bühlmann, Philipp Rütimann, Sara van de Geer and Cun-Hui Zhang , 2013 .

[2]  Matthias Hein,et al.  Non-negative least squares for high-dimensional linear models: consistency and sparse recovery without regularization , 2012, 1205.0953.

[3]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[4]  Trevor J. Hastie,et al.  The Graphical Lasso: New Insights and Alternatives , 2011, Electronic journal of statistics.

[5]  N. Meinshausen Sign-constrained least squares estimation for high-dimensional regression , 2012, 1202.0889.

[6]  R. Tibshirani,et al.  Covariance‐regularized regression and classification for high dimensional problems , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[7]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[8]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[9]  José Crossa,et al.  Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers , 2010, Genetics.

[10]  S. Geer,et al.  Correlated variables in regression: Clustering and sparse estimation , 2012, 1209.5908.

[11]  Kam D. Dahlquist,et al.  Regression Approaches for Microarray Data Analysis , 2002, J. Comput. Biol..

[12]  J. Friedman,et al.  New Insights and Faster Computations for the Graphical Lasso , 2011 .

[13]  Y. Ritov,et al.  Persistence in high-dimensional linear predictor selection and the virtue of overparametrization , 2004 .

[14]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[15]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[16]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[17]  Eytan Domany,et al.  Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. , 2003, Cancer research.

[18]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[19]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[20]  Ker-Chau Li,et al.  A Model-Averaging Approach for High-Dimensional Regression , 2014 .

[21]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[22]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[23]  R. Shafer,et al.  Genotypic predictors of human immunodeficiency virus type 1 drug resistance , 2006, Proceedings of the National Academy of Sciences.

[24]  S. Geer,et al.  On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.

[25]  Fionn Murtagh,et al.  Clustering in massive data sets , 2002 .

[26]  Trevor Hastie,et al.  Averaged gene expressions for regression. , 2007, Biostatistics.

[27]  A. Tsybakov,et al.  Sparsity oracle inequalities for the Lasso , 2007, 0705.3308.

[28]  Panos M. Pardalos,et al.  Handbook of Massive Data Sets , 2002, Massive Computing.

[29]  P. Fryzlewicz,et al.  High dimensional variable selection via tilting , 2012, 1611.08640.

[30]  Ali Shojaie,et al.  The cluster graphical lasso for improved estimation of Gaussian graphical models , 2013, Comput. Stat. Data Anal..

[31]  Robert Tibshirani,et al.  Hybrid hierarchical clustering with applications to microarray data. , 2005, Biostatistics.