Total Variation Projection With First Order Schemes

This article proposes a new algorithm to compute the projection on the set of images whose total variation is bounded by a constant. The projection is computed through a dual formulation that is solved by first order non-smooth optimization methods. This yields an iterative algorithm that applies iterative soft thresholding to the dual vector field, and for which we establish convergence rate on the primal iterates. This projection algorithm can then be used as a building block in a variety of applications such as solving inverse problems under a total variation constraint, or for texture synthesis. Numerical results are reported to illustrate the usefulness and potential applicability of our TV projection algorithm on various examples including denoising, texture synthesis, inpainting, deconvolution and tomography problems. We also show that our projection algorithm competes favorably with state-of-the-art TV projection methods in terms of convergence speed.

[1]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[2]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[3]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[4]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[5]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[6]  P. L. Combettes Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .

[7]  Brendt Wohlberg,et al.  Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.

[8]  K. Bredies,et al.  Linear Convergence of Iterative Soft-Thresholding , 2007, 0709.1598.

[9]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[10]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  Song-Chun Zhu,et al.  Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998, International Journal of Computer Vision.

[13]  Mohamed-Jalal Fadili,et al.  Total variation projection with first order schemes , 2009, ICIP.

[14]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[15]  Andy M. Yip,et al.  Recent Developments in Total Variation Image Restoration , 2004 .

[16]  I. Daubechies,et al.  Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints , 2007, 0706.4297.

[17]  G. Carlier,et al.  On the selection of maximal Cheeger sets , 2007, Differential and Integral Equations.

[18]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[19]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..

[20]  P. Tseng Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .

[21]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[22]  Yin Zhang,et al.  A Fast Algorithm for Image Deblurring with Total Variation Regularization , 2007 .

[23]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[24]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[25]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[26]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[27]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Mark W. Schmidt,et al.  GROUP SPARSITY VIA LINEAR-TIME PROJECTION , 2008 .

[29]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[30]  Heinz H. Bauschke,et al.  Bregman Monotone Optimization Algorithms , 2003, SIAM J. Control. Optim..

[31]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[32]  Simon Masnou,et al.  Disocclusion: a variational approach using level lines , 2002, IEEE Trans. Image Process..

[33]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[34]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[35]  Justin Romberg,et al.  Practical Signal Recovery from Random Projections , 2005 .

[36]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[37]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[38]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[39]  Patrick L. Combettes,et al.  A block-iterative surrogate constraint splitting method for quadratic signal recovery , 2003, IEEE Trans. Signal Process..

[40]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[41]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[42]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[43]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[44]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[45]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[46]  Ken Perlin,et al.  An image synthesizer , 1988 .

[47]  Jean-Luc Starck,et al.  Sparse Representation-based Image Deconvolution by iterative Thresholding , 2006 .

[48]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[49]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[50]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[51]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[52]  James R. Bergen,et al.  Texture Analysis: Representation and Matching , 1995, ICIAP.

[53]  Wotao Yin,et al.  Second-order Cone Programming Methods for Total Variation-Based Image Restoration , 2005, SIAM J. Sci. Comput..

[54]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[55]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[56]  G. Carlier,et al.  APPROXIMATION OF MAXIMAL CHEEGER SETS BY PROJECTION , 2009 .

[57]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..