Conceptual Clustering, Categorization, and Polymorphy

In this paper we describe WITT, a computational model of categorization and conceptual clustering that has been motivated and guided by research on human categorization. Properties of categories to which humans are sensitive include best or prototypical members, relative contrasts between categories, and polymorphy (neither necessary nor sufficient feature rules). The system uses pairwise feature correlations to determine the “similarity” between objects and clusters of objects, allowing the system a flexible representation scheme that can model common-feature categories and polymorphous categories. This intercorrelation measure is cast in terms of an information-theoretic evaluation function that directs WITT'S search through the space of clusterings. This information-theoretic similarity metric also can be used to explain basic-level and typicality effects that occur in humans. WITT has been tested on both artificial domains and on data from the 1985 World Almanac, and we have examined the effect of various system parameters on the quality of the model's behavior.

[1]  L. Wittgenstein Philosophical investigations = Philosophische Untersuchungen , 1958 .

[2]  I. DENNIS,et al.  New Problem in Concept Formation , 1973, Nature.

[3]  Edward E. Smith,et al.  Categories and concepts , 1984 .

[4]  Patrick Henry Winston,et al.  The psychology of computer vision , 1976, Pattern Recognit..

[5]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[6]  R. Sokal,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification. , 1975 .

[7]  G. Collins,et al.  Transcending inductive category formation in learning , 1986, Behavioral and Brain Sciences.

[8]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[9]  L. Orlóci,et al.  Information Analysis of Structure in Biological Collections , 1969, Nature.

[10]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[11]  Tom Michael Mitchell Version spaces: an approach to concept learning. , 1979 .

[12]  G. N. Lance,et al.  Note on a New Information-Statistic Classificatory Program , 1968, Comput. J..

[13]  W. Estes Memory storage and retrieval processes in category learning. , 1986, Journal of experimental psychology. General.

[14]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[15]  M. Posner,et al.  On the genesis of abstract ideas. , 1968, Journal of experimental psychology.

[16]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[17]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[18]  D. Medin,et al.  The role of theories in conceptual coherence. , 1985, Psychological review.

[19]  Tom Michael Mitchell,et al.  Explanation-based generalization: A unifying view , 1986 .

[20]  Mark A. Gluck,et al.  Information, Uncertainty and the Utility of Categories , 1985 .

[21]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[22]  Ryszard S. Michalski,et al.  Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  John R. Anderson,et al.  Machine learning - an artificial intelligence approach , 1982, Symbolic computation.

[24]  Michael Lebowitz,et al.  Experiments with Incremental Concept Formation: UNIMEM , 1987, Machine Learning.

[25]  Brian Everitt,et al.  Cluster analysis , 1974 .

[26]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[27]  D. Medin,et al.  Family resemblance, conceptual cohesiveness, and category construction , 1987, Cognitive Psychology.

[28]  Gregory L. Murphy,et al.  Cue validity and levels of categorization. , 1982 .

[29]  Stephen Grossberg,et al.  Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions , 1976, Biological Cybernetics.

[30]  R. Mooney,et al.  Explanation-Based Learning: An Alternative View , 1986, Machine Learning.

[31]  Donald Homa,et al.  Abstraction of ill-defined form. , 1978 .

[32]  Patrick Henry Winston,et al.  Learning structural descriptions from examples , 1970 .

[33]  S. Grossberg,et al.  Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors , 1976, Biological Cybernetics.