Experimental Analysis of the Real-time Recurrent Learning Algorithm

Abstract The real-time recurrent learning algorithm is a gradient-following learning algorithm for completely recurrent networks running in continually sampled time. Here we use a series of simulation experiments to investigate the power and properties of this algorithm. In the recurrent networks studied here, any unit can be connected to any other, and any unit can receive external input. These networks run continually in the sense that they sample their inputs on every update cycle, and any unit can have a training target on any cycle. The storage required and computation time on each step are independent of time and are completely determined by the size of the network, so no prior knowledge of the temporal structure of the task being learned is required. The algorithm is nonlocal in the sense that each unit must have knowledge of the complete recurrent weight matrix and error vector. The algorithm is computationally intensive in sequential computers, requiring a storage capacity of the order of the thi...