Sélection de capteurs pour interfaces cerveau-ordinateur de type P300

Une interface cerveau-ordinateur (ICO) est un nouveau type d'interface homme-machine qui permet la communication directe entre l'utilisateur et la machine en decodant l'activite cerebrale. Les potentiels cognitifs evoques comme le P300 peuvent etre obtenus grâce au paradigme oddball - stimulus discordant - ou les cibles sont selectionnees par l'utilisateur. Une nouvelle methode pour la reduction des capteurs des signaux electroencephalographiqes (EEG) est proposee. La reduction du nombre de capteurs permet d'accroitre le confort de l'utilisateur en diminuant le temps necessaire a la pose des capteurs. Par ailleurs, une diminution du nombre de capteurs permet de reduire le cout de l'ICO et permettrait de reduire la consommation energetique d'un casque EEG sans fil. L'approche proposee est basee sur une elimination recursive des capteurs ou la fonction de cout est basee sur une evaluation du rapport signal sur signal plus bruit (RSSB), apres un filtrage spatial. Nous montrons que cette fonction de cout est plus robuste et moins couteuse en temps de calcul que d'autres fonctions basees sur l'evaluation de la detection du P300 ou des cibles, permettant ainsi d'eviter une etape de classification. L'approche proposee est testee et validee sur 20 sujets au cours de plusieurs sessions.

[1]  Touradj Ebrahimi,et al.  An efficient P300-based brain–computer interface for disabled subjects , 2008, Journal of Neuroscience Methods.

[2]  Clemens Brunner,et al.  Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis , 2007, Pattern Recognit. Lett..

[3]  Alain Rakotomamonjy,et al.  BCI Competition III: Dataset II- Ensemble of SVMs for BCI P300 Speller , 2008, IEEE Transactions on Biomedical Engineering.

[4]  Ivan Volosyak,et al.  Multiple Channel Detection of Steady-State Visual Evoked Potentials for Brain-Computer Interfaces , 2007, IEEE Transactions on Biomedical Engineering.

[5]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.

[6]  K.-R. Muller,et al.  The Berlin brain-computer interface: EEG-based communication without subject training , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[7]  Hubert Cecotti,et al.  Neural network pruning for feature selection - Application to a P300 Brain-Computer Interface , 2009, ESANN.

[8]  Klaus-Robert Müller,et al.  Classifying Single Trial EEG: Towards Brain Computer Interfacing , 2001, NIPS.

[9]  E. Donchin,et al.  Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. , 1988, Electroencephalography and clinical neurophysiology.

[10]  T. Felzer,et al.  Analyzing EEG signals using the probability estimating guarded neural classifier , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[11]  Charles W. Anderson,et al.  Determining Mental State from EEG Signals Using Parallel Implementations of Neural Networks , 1995, Sci. Program..

[12]  Guillaume Gibert,et al.  “P300 speller” Brain-Computer Interface: Enhancement of P300 evoked potential by spatial filters , 2008, 2008 16th European Signal Processing Conference.

[13]  Ali H. Shoeb,et al.  Sensor selection for energy-efficient ambulatory medical monitoring , 2009, MobiSys '09.

[14]  Kazuyuki Aihara,et al.  Adapting Spatial Filter Methods for Nonstationary BCIs , 2006 .

[15]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[16]  Ettore Lettich,et al.  Ten Percent Electrode System for Topographic Studies of Spontaneous and Evoked EEG Activities , 1985 .

[17]  Hubert Cecotti,et al.  Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Jonathan R Wolpaw,et al.  Brain–computer interface systems: progress and prospects , 2007, Expert review of medical devices.

[19]  M. Hansenne,et al.  Le potentiel évoqué cognitif P300 (I) : aspects théorique et psychobiologique , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[20]  Reinhold Scherer,et al.  Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components , 2005, Journal of neural engineering.

[21]  L. Cohen,et al.  Brain–computer interfaces: communication and restoration of movement in paralysis , 2007, The Journal of physiology.

[22]  M. Hansenne Le potentiel évoqué cognitif P300 (II) : variabilité interindividuelle et application clinique en psychopathologie , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[23]  Bernhard Schölkopf,et al.  Support vector channel selection in BCI , 2004, IEEE Transactions on Biomedical Engineering.

[24]  Bernhard Schölkopf,et al.  Robust EEG Channel Selection across Subjects for Brain-Computer Interfaces , 2005, EURASIP J. Adv. Signal Process..

[25]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[26]  G Pfurtscheller,et al.  Using time-dependent neural networks for EEG classification. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[27]  Gert Pfurtscheller,et al.  Neural network based classification of single-trial EEG data , 1993, Artif. Intell. Medicine.

[28]  Ivan Volosyak,et al.  Evaluation of an SSVEP based Brain-Computer Interface on the command and application levels , 2009, 2009 4th International IEEE/EMBS Conference on Neural Engineering.

[29]  Ivan Volosyak,et al.  Evaluation of the Bremen SSVEP based BCI in real world conditions , 2009, 2009 IEEE International Conference on Rehabilitation Robotics.

[30]  E. W. Sellers,et al.  Toward enhanced P300 speller performance , 2008, Journal of Neuroscience Methods.

[31]  Motoaki Kawanabe,et al.  Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing , 2007, NIPS.

[32]  Mineichi Kudo,et al.  Classifier-independent feature selection on the basis of divergence criterion , 2006, Pattern Analysis and Applications.

[33]  Guillaume Gibert,et al.  xDAWN Algorithm to Enhance Evoked Potentials: Application to Brain–Computer Interface , 2009, IEEE Transactions on Biomedical Engineering.

[34]  Fusheng Yang,et al.  BCI competition 2003-data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications , 2004, IEEE Transactions on Biomedical Engineering.

[35]  E Donchin,et al.  The mental prosthesis: assessing the speed of a P300-based brain-computer interface. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[36]  Gert Pfurtscheller,et al.  Neural network-based predictions of hand movements using simulated and real EEG data , 1995, Neurocomputing.

[37]  Klaus-Robert Müller,et al.  Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring , 2008, Journal of Neuroscience Methods.