Classifying pairs with trees for supervised biological network inference† †Electronic supplementary information (ESI) available: Implementation and computational issues, supplementary performance curves, and illustration of interpretability of trees. See DOI: 10.1039/c5mb00174a Click here for additi

We systematically investigate, theoretically and empirically, the application of tree-based methods for the supervised inference of biological networks.

[1]  Chuang Liu,et al.  Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference , 2012, PLoS Comput. Biol..

[2]  Rémi Gilleron,et al.  Learning from positive and unlabeled examples , 2000, Theor. Comput. Sci..

[3]  Florence d'Alché-Buc,et al.  Semi-supervised Penalized Output Kernel Regression for Link Prediction , 2011, ICML.

[4]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[5]  Ziv Bar-Joseph,et al.  Evaluation of different biological data and computational classification methods for use in protein interaction prediction , 2006, Proteins.

[6]  Jean-Philippe Vert,et al.  Reconstruction of Biological Networks by Supervised Machine Learning Approaches , 2008 .

[7]  Yasuo Tabei,et al.  Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers , 2012, Bioinform..

[8]  Yoshihiro Yamanishi,et al.  Extracting Sets of Chemical Substructures and Protein Domains Governing Drug-Target Interactions , 2011, J. Chem. Inf. Model..

[9]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[10]  Jean-Philippe Vert,et al.  On learning with kernels for unordered pairs , 2010, ICML.

[11]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[12]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[13]  William Stafford Noble,et al.  Kernel methods for predicting protein-protein interactions , 2005, ISMB.

[14]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[15]  Ting Wang,et al.  An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.

[16]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[17]  Jesse Gillis,et al.  The Impact of Multifunctional Genes on "Guilt by Association" Analysis , 2011, PloS one.

[18]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[19]  Tsuyoshi Kato,et al.  Selective integration of multiple biological data for supervised network inference , 2005, Bioinform..

[20]  Luc De Raedt,et al.  Top-Down Induction of Clustering Trees , 1998, ICML.

[21]  Mei Liu,et al.  Prediction of protein-protein interactions using random decision forest framework , 2005, Bioinform..

[22]  Yoshihiro Yamanishi,et al.  Protein network inference from multiple genomic data: a supervised approach , 2004, ISMB/ECCB.

[23]  Yanjun Qi,et al.  Random Forest Similarity for Protein-Protein Interaction Prediction from Multiple Sources , 2004, Pacific Symposium on Biocomputing.

[24]  Hua Yu,et al.  A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data , 2012, PloS one.

[25]  Charles Boone,et al.  Identifying transcription factor functions and targets by phenotypic activation , 2006, Proceedings of the National Academy of Sciences.

[26]  Pierre Geurts,et al.  Inferring biological networks with output kernel trees , 2007, BMC Bioinformatics.

[27]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[28]  Stephen Muggleton,et al.  Elements of computational systems biology , 2010 .

[29]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[30]  Yanjun Qi,et al.  Prediction of Interactions Between HIV-1 and Human Proteins by Information Integration , 2008, Pacific Symposium on Biocomputing.

[31]  Yoshihiro Yamanishi,et al.  Supervised prediction of drug–target interactions using bipartite local models , 2009, Bioinform..

[32]  Yoshihiro Yamanishi,et al.  Supervised enzyme network inference from the integration of genomic data and chemical information , 2005, ISMB.

[33]  Sylvain Brohée,et al.  Unraveling networks of co-regulated genes on the sole basis of genome sequences , 2011, Nucleic acids research.

[34]  Michèle Sebag,et al.  Machine Learning and Knowledge Discovery in Databases , 2015, Lecture Notes in Computer Science.

[35]  Yoshihiro Yamanishi,et al.  Prediction of drug–target interaction networks from the integration of chemical and genomic spaces , 2008, ISMB.

[36]  Charles Elkan,et al.  Learning classifiers from only positive and unlabeled data , 2008, KDD.

[37]  Jean-Philippe Vert,et al.  SIRENE: supervised inference of regulatory networks , 2008, ECCB.

[38]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[39]  Patrick J. Killion,et al.  Genetic reconstruction of a functional transcriptional regulatory network , 2007, Nature Genetics.

[40]  Mark Gerstein,et al.  Information assessment on predicting protein-protein interactions , 2004, BMC Bioinformatics.

[41]  E. Marcotte,et al.  A flaw in the typical evaluation scheme for pair-input computational predictions , 2012, Nature Methods.

[42]  William Stafford Noble,et al.  A new pairwise kernel for biological network inference with support vector machines , 2007, BMC Bioinformatics.

[43]  Pierre Geurts,et al.  Supervised learning with decision tree-based methods in computational and systems biology. , 2009, Molecular bioSystems.

[44]  YamanishiYoshihiro,et al.  Prediction of drug–target interaction networks from the integration of chemical and genomic spaces , 2008 .

[45]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[46]  Jean-Philippe Vert,et al.  Supervised reconstruction of biological networks with local models , 2007, ISMB/ECCB.

[47]  Pierre Geurts,et al.  On protocols and measures for the validation of supervised methods for the inference of biological networks , 2013, Front. Genet..

[48]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[49]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.