Slope Centering: Making Shortcut Weights Effective

Shortcut connections are a popular architectural feature of multi-layer perceptrons. It is generally assumed that by implementing a linear sub-mapping, shortcuts assist the learning process in the remainder of the network. Here we find that this is not always the case: shortcut weights may also act as distractors that slow down convergence and can lead to inferior solutions. This problem can be addressed with slope centering, a particular form of gradient factor centering. By removing the linear component of the error signal at a hidden node, slope centering effectively decouples that node from the shortcuts that bypass it. This eliminates the possibility of destructive interference from shortcut weights, and thus ensures that the benefits of shortcut connections are fully realized.