Machine learning based decision support for many-objective optimization problems

Multiple Criteria Decision-Making (MCDM) based Multi-objective Evolutionary Algorithms (MOEAs) are increasingly becoming popular for dealing with optimization problems with more than three objectives, commonly termed as many-objective optimization problems (MaOPs). These algorithms elicit preferences from a single or multiple Decision Makers (DMs), a priori or interactively, to guide the search towards the solutions most preferred by the DM(s), as against the whole Pareto-optimal Front (POF). Despite its promise for dealing with MaOPs, the utility of this approach is impaired by the lack of-objectivity; repeatability; consistency; and coherence in DM?s preferences. This paper proposes a machine learning based framework to counter the above limitations. Towards it, the preference-structure of the different objectives embedded in the problem model is learnt in terms of: a smallest set of conflicting objectives which can generate the same POF as the original problem; the smallest objective sets corresponding to pre-specified errors; and the objective sets of pre-specified sizes that correspond to minimum error. While the focus is on demonstrating how the proposed framework could serve as a decision support for the DM, its performance is also studied vis-i?-vis an alternative approach (based on dominance relation preservation), for a wide range of test problems and a real-world problem. The results mark a new direction for MCDM based MOEAs for MaOPs.

[1]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[2]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[3]  Paul Slovic,et al.  Comparison of Bayesian and Regression Approaches to the Study of Information Processing in Judgment. , 1971 .

[4]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[5]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[6]  Marco Laumanns,et al.  Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions , 2004, IEEE Transactions on Evolutionary Computation.

[7]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[8]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[9]  David W. Corne,et al.  Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization , 2007, EMO.

[10]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[11]  L. J. P. van der Maaten,et al.  An Introduction to Dimensionality Reduction Using Matlab , 2007 .

[12]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[13]  Timothy D. Wilson,et al.  Telling more than we can know: Verbal reports on mental processes. , 1977 .

[14]  M. Peruggia Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data , 2003 .

[15]  Carlos A. Coello Coello,et al.  Objective reduction using a feature selection technique , 2008, GECCO '08.

[16]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[17]  Dimo Brockhoff,et al.  Many objective optimization and hypervolume based search , 2009 .

[18]  Evan J. Hughes,et al.  MSOPS-II: A general-purpose Many-Objective optimiser , 2007, 2007 IEEE Congress on Evolutionary Computation.

[19]  ZitzlerEckart,et al.  Objective reduction in evolutionary multiobjective optimization , 2009 .

[20]  LiHong,et al.  MOEA/D + uniform design , 2013 .

[21]  Marc Roubens,et al.  Multiple criteria decision making , 1994 .

[22]  Andrzej P. Wierzbicki,et al.  The Need for and Possible Methods of Objective Ranking , 2010, Trends in Multiple Criteria Decision Analysis.

[23]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[24]  J. Croft Conflict , 2007, The Evolution of Social Behaviour.

[25]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[26]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[27]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[28]  Michael Pidd,et al.  Platform for Change , 1976 .

[29]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[30]  Evan J. Hughes,et al.  Radar Waveform Optimisation as a Many-Objective Application Benchmark , 2007, EMO.

[31]  Kalyanmoy Deb,et al.  Progressively interactive evolutionary multi-objective optimization method using generalized polynomial value functions , 2010, IEEE Congress on Evolutionary Computation.

[32]  Kiyoshi Tanaka,et al.  Working principles, behavior, and performance of MOEAs on MNK-landscapes , 2007, Eur. J. Oper. Res..

[33]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[34]  Eckart Zitzler,et al.  Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization , 2006, PPSN.

[35]  Hong Li,et al.  MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives , 2013, Comput. Oper. Res..

[36]  Eckart Zitzler,et al.  Objective Reduction in Evolutionary Multiobjective Optimization: Theory and Applications , 2009, Evolutionary Computation.

[37]  Kalyanmoy Deb,et al.  On Handling a Large Number of Objectives A Posteriori and During Optimization , 2008, Multiobjective Problem Solving from Nature.

[38]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[39]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[40]  Sebahattin Bektaand Yaseminiman The comparison of L 1 and L 2 -norm minimization methods , 2010 .

[41]  Kalyanmoy Deb,et al.  Non-linear Dimensionality Reduction Procedures for Certain Large-Dimensional Multi-objective Optimization Problems: Employing Correntropy and a Novel Maximum Variance Unfolding , 2007, EMO.

[42]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[43]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[44]  ZhangQingfu,et al.  Objective Reduction in Many-Objective Optimization , 2013 .

[45]  Tapabrata Ray,et al.  A Pareto Corner Search Evolutionary Algorithm and Dimensionality Reduction in Many-Objective Optimization Problems , 2011, IEEE Transactions on Evolutionary Computation.

[46]  Qingfu Zhang,et al.  Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms , 2013, IEEE Transactions on Evolutionary Computation.

[47]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[48]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[49]  Stafford Beer,et al.  Platform for Change , 1995 .

[50]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[51]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[52]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[53]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[54]  Maurice d' Ocagne Coordonnées parallèles et axiales Méthode de Transformation géométrique et Procédé nouveau de Calcul graphique, déduits de la Considération des Coordonnées parallèles , 1885, Nature.

[55]  Peter J. Fleming,et al.  Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation , 2003, EMO.

[56]  P. L. Yu,et al.  Habitual Domains , 1991, Operational Research.

[57]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[58]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[59]  Hisao Ishibuchi,et al.  Effects of the Existence of Highly Correlated Objectives on the Behavior of MOEA/D , 2011, EMO.

[60]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[61]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.