Decomposition of Big Tensors With Low Multilinear Rank

Tensor decompositions are promising tools for big data analytics as they bring multiple modes and aspects of data to a unified framework, which allows us to discover complex internal structures and correlations of data. Unfortunately most existing approaches are not designed to meet the major challenges posed by big data analytics. This paper attempts to improve the scalability of tensor decompositions and provides two contributions: A flexible and fast algorithm for the CP decomposition (FFCP) of tensors based on their Tucker compression; A distributed randomized Tucker decomposition approach for arbitrarily big tensors but with relatively low multilinear rank. These two algorithms can deal with huge tensors, even if they are dense. Extensive simulations provide empirical evidence of the validity and efficiency of the proposed algorithms.

[1]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.

[2]  Anand Rangarajan,et al.  Image Denoising Using the Higher Order Singular Value Decomposition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[4]  Mubarak Shah,et al.  Action MACH a spatio-temporal Maximum Average Correlation Height filter for action recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Pierre Comon,et al.  Fast Decomposition of Large Nonnegative Tensors , 2015, IEEE Signal Processing Letters.

[6]  Rasmus Bro,et al.  Improving the speed of multiway algorithms: Part II: Compression , 1998 .

[7]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[8]  Andrzej Cichocki,et al.  Canonical Polyadic Decomposition Based on a Single Mode Blind Source Separation , 2012, IEEE Signal Processing Letters.

[9]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[10]  Xiaojun Wu,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorizations : An algorithmic perspective , 2014, IEEE Signal Processing Magazine.

[12]  Andrzej Cichocki,et al.  Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.

[13]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[14]  Andrzej Cichocki,et al.  Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness , 2014, IEEE Transactions on Image Processing.

[15]  Christos Faloutsos,et al.  GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries , 2012, KDD.

[16]  Andrzej Cichocki,et al.  Advances in PARAFAC Using Parallel Block Decomposition , 2009, ICONIP.

[17]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[18]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[19]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[20]  Nikos D. Sidiropoulos,et al.  From K-Means to Higher-Way Co-Clustering: Multilinear Decomposition With Sparse Latent Factors , 2013, IEEE Transactions on Signal Processing.

[21]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.

[22]  Volkan Cevher,et al.  Convex Optimization for Big Data: Scalable, randomized, and parallel algorithms for big data analytics , 2014, IEEE Signal Processing Magazine.

[23]  Zhengping Qian,et al.  MadLINQ: large-scale distributed matrix computation for the cloud , 2012, EuroSys '12.

[24]  Nico Vervliet,et al.  Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.

[25]  Nikos D. Sidiropoulos,et al.  Parallel Randomly Compressed Cubes : A scalable distributed architecture for big tensor decomposition , 2014, IEEE Signal Processing Magazine.

[26]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[27]  Charalampos E. Tsourakakis MACH: Fast Randomized Tensor Decompositions , 2009, SDM.

[28]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[29]  Michael W. Mahoney,et al.  A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .

[30]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[31]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[32]  Volkan Cevher,et al.  Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective , 2010, Proceedings of the IEEE.

[33]  Jean Ponce,et al.  A tensor-based algorithm for high-order graph matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Andrzej Cichocki,et al.  Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[35]  A. Cichocki,et al.  Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .

[36]  Nikos D. Sidiropoulos,et al.  A parallel algorithm for big tensor decomposition using randomly compressed cubes (PARACOMP) , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[37]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[38]  Nikos D. Sidiropoulos,et al.  ParCube: Sparse Parallelizable Tensor Decompositions , 2012, ECML/PKDD.