Phaseless super-resolution in the continuous domain

Phaseless super-resolution refers to the problem of super-resolving a signal from only its low-frequency Fourier magnitude measurements. In this paper, we consider the phaseless super-resolution problem of recovering a sum of sparse Dirac delta functions which can be located anywhere in the continuous time-domain. For such signals in the continuous domain, we propose a novel Semidefinite Programming (SDP) based signal recovery method to achieve the phaseless super-resolution. This work extends the recent work of Jaganathan et al. [1], which considered phaseless super-resolution for discrete signals on the grid.

[1]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[2]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[3]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[4]  Otto Toeplitz,et al.  Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen , 1911 .

[5]  Lihong V. Wang,et al.  Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging , 2006, Nature Biotechnology.

[6]  S. Blackband,et al.  MR microscopy and high resolution small animal MRI: applications in neuroscience research , 2002, Progress in Neurobiology.

[7]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[8]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[9]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[10]  Yonina C. Eldar,et al.  Phaseless super-resolution using masks , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Pál Turán,et al.  Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .

[12]  Louis E. Brus,et al.  High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface , 2007, Proceedings of the National Academy of Sciences.

[13]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  Yonina C. Eldar,et al.  An algorithm for exact super-resolution and phase retrieval , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[17]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[18]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[19]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[20]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[21]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[22]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[23]  R. Horne,et al.  A negative staining method for high resolution electron microscopy of viruses. , 1959, Biochimica et biophysica acta.

[24]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[25]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .