Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron

[1]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[2]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[4]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[5]  J. A. Varela,et al.  Differential Depression at Excitatory and Inhibitory Synapses in Visual Cortex , 1999, The Journal of Neuroscience.

[6]  Kenneth O. Johnson,et al.  Synchrony: a neuronal mechanism for attentional selection? , 2002, Current Opinion in Neurobiology.

[7]  R. Eckhorn,et al.  Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. , 1994, Neuroreport.

[8]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[9]  Robert A. Frazor,et al.  Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. , 2002, Journal of neurophysiology.

[10]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[11]  Trichur Raman Vidyasagar,et al.  Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  C. Stevens,et al.  Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synapses , 1997, Neuron.

[13]  R. Shapley,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[14]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  K. H. Britten,et al.  Contrast dependence of response normalization in area MT of the rhesus macaque. , 2002, Journal of neurophysiology.

[16]  J. Lacaille,et al.  Membrane properties of interneurons in stratum oriens-alveus of the CA1 region of rat hippocampus in vitro , 1990, Neuroscience.

[17]  R. Wurtz,et al.  Responses of MT and MST neurons to one and two moving objects in the receptive field. , 1997, Journal of neurophysiology.

[18]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Wolfgang Maass,et al.  Dynamic Stochastic Synapses as Computational Units , 1997, Neural Computation.

[20]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[21]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[23]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[24]  T. Sejnowski,et al.  Network Oscillations: Emerging Computational Principles , 2006, The Journal of Neuroscience.

[25]  T. Freund,et al.  Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. , 1997, The Journal of physiology.

[26]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[27]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[28]  T. Sejnowski,et al.  From Invertebrate Olfaction to Human Cognition: Emerging Computational Functions of Synchronized Oscillatory Activity , 2006, The Journal of Neuroscience.

[29]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[30]  C. Koch,et al.  An oscillation-based model for the neuronal basis of attention , 1993, Vision Research.

[31]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[32]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[33]  G. Deco,et al.  The time course of selective visual attention: theory and experiments , 2002, Vision Research.

[34]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[35]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[36]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[37]  S. Hestrin,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2001, Science.

[38]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[39]  T. Sejnowski,et al.  Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models , 2000, The Journal of Neuroscience.

[40]  E. Miller,et al.  Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus , 1993, Brain Research.

[41]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[42]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[43]  C. Stevens,et al.  Facilitation and depression at single central synapses , 1995, Neuron.

[44]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[45]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[46]  M. Tovée,et al.  The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field , 2004, Experimental Brain Research.

[47]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[48]  W Singer,et al.  Role of the temporal domain for response selection and perceptual binding. , 1997, Cerebral cortex.

[49]  C. Stevens,et al.  Response of Hippocampal Synapses to Natural Stimulation Patterns , 1999, Neuron.

[50]  W. Singer,et al.  Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties , 1992, Visual Neuroscience.

[51]  R. Traub,et al.  Morphine disrupts long-range synchrony of gamma oscillations in hippocampal slices. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  B. Connors,et al.  Synchronous Activity of Inhibitory Networks in Neocortex Requires Electrical Synapses Containing Connexin36 , 2001, Neuron.

[53]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[54]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[55]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[56]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[57]  J. C. Anderson,et al.  Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex , 1994, The Journal of comparative neurology.

[58]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[59]  R. Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. II. Physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Paul H. E. Tiesinga Stimulus competition by inhibitory interference , 2006, Neurocomputing.

[61]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[62]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[63]  M. Carandini,et al.  A Synaptic Explanation of Suppression in Visual Cortex , 2002, The Journal of Neuroscience.

[64]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on orientation tuning , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  C. Koch,et al.  Some reflections on visual awareness. , 1990, Cold Spring Harbor symposia on quantitative biology.

[66]  H. Eng,et al.  Synthesis of β-Tubulin, Actin, and Other Proteins in Axons of Sympathetic Neurons in Compartmented Cultures , 1999, The Journal of Neuroscience.

[67]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  Katherine M. Armstrong,et al.  Visuomotor Origins of Covert Spatial Attention , 2003, Neuron.

[69]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Paul H. E. Tiesinga,et al.  Attentional modulation of firing rate and synchrony in a model cortical network , 2005, Journal of Computational Neuroscience.

[71]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[72]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[74]  M L Hines,et al.  Neuron: A Tool for Neuroscientists , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[75]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[76]  B. Roerig,et al.  Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex. , 2002, Cerebral cortex.

[77]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[78]  T. Sejnowski,et al.  Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity , 2003, Neuroscience.

[79]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[80]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[81]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[82]  J. Lund,et al.  Distribution of GABAergic neurons and axon terminals in the macaque striate cortex , 1987, The Journal of comparative neurology.

[83]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[84]  Terrence J. Sejnowski,et al.  Integrate-and-Fire Neurons Driven by Correlated Stochastic Input , 2002, Neural Computation.

[85]  K. H. Britten,et al.  Spatial Summation in the Receptive Fields of MT Neurons , 1999, The Journal of Neuroscience.

[86]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[87]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  R. Hari,et al.  Preference of Personal to Extrapersonal Space in a Visuomotor Task , 1996, Journal of Cognitive Neuroscience.

[89]  Wang Hsi-Ping,et al.  Supralinear reliability of cortical spiking from synchronous thalamic inputs , 2007, BMC Neuroscience.

[90]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[91]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[92]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  J. Kao,et al.  Organization of Intracortical Circuits in Relation to Direction Preference Maps in Ferret Visual Cortex , 1999, The Journal of Neuroscience.

[94]  Jorge V. José,et al.  Synchronization as a mechanism for attentional gain modulation , 2004, Neurocomputing.

[95]  M. Stryker Drums Keep Pounding a Rhythm in the Brain , 2001, Science.

[96]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[97]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[98]  E. Niebur,et al.  Modeling the Temporal Dynamics of IT Neurons in Visual Search: A Mechanism for Top-Down Selective Attention , 1996, Journal of Cognitive Neuroscience.

[99]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[100]  T. Sejnowski,et al.  The Monetary Transmission Mechanism in the United Kingdom: Pass-Through and Policy Rules. manuscript , 1996 .

[101]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[102]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .

[103]  Bartlett W. Mel,et al.  Dendritic Compartmentalization Could Underlie Competition and Attentional Biasing of Simultaneous Visual Stimuli , 2000, NIPS.