Forming Neural Networks Through Efficient and Adaptive Coevolution

This article demonstrates the advantages of a cooperative, coevolutionary search in difficult control problems. The symbiotic adaptive neuroevolution (SANE) system coevolves a population of neurons that cooperate to form a functioning neural network. In this process, neurons assume different but overlapping roles, resulting in a robust encoding of control behavior. SANE is shown to be more efficient and more adaptive and to maintain higher levels of diversity than the more common network-based population approaches. Further empirical studies illustrate the emergent neuron specializations and the different roles the neurons assume in the population.

[1]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[2]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[3]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[6]  Kai-Fu Lee,et al.  The Development of a World Class Othello Program , 1990, Artif. Intell..

[7]  Richard K. Belew,et al.  Evolving networks: using the genetic algorithm with connectionist learning , 1990 .

[8]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[9]  D. Parisi,et al.  Growing neural networks , 1991 .

[10]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[11]  David R. Jefferson,et al.  Selection in Massively Parallel Genetic Algorithms , 1991, ICGA.

[12]  John R. Koza,et al.  Genetic generation of both the weights and architecture for a neural network , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[15]  Francesco Mondada,et al.  Mobile Robot Miniaturisation: A Tool for Investigation in Control Algorithms , 1993, ISER.

[16]  Risto Miikkulainen,et al.  Evolving Neural Networks to Focus Minimax Search , 1994, AAAI.

[17]  Robert E. Smith,et al.  Is a Learning Classifier System a Type of Neural Network? , 1994, Evolutionary Computation.

[18]  Raymond J. Mooney,et al.  Theory Refinement Combining Analytical and Empirical Methods , 1994, Artif. Intell..

[19]  David E. Goldberg,et al.  Implicit Niching in a Learning Classifier System: Nature's Way , 1994, Evolutionary Computation.

[20]  John J. Grefenstette,et al.  A Coevolutionary Approach to Learning Sequential Decision Rules , 1995, ICGA.

[21]  Jan Paredis,et al.  Coevolutionary Computation , 1995, Artificial Life.

[22]  Bruce A. Whitehead,et al.  Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction , 1996, IEEE Trans. Neural Networks.

[23]  Risto Miikkulainen,et al.  Evolving Obstacle Avoidance Behavior in a Robot Arm , 1996 .

[24]  ArmDavid E. Moriarty,et al.  Evolving Obstacle Avoidance Behavior in a Robot , 1996 .

[25]  Eric R. Weeks,et al.  Evolving artificial neural networks to control chaotic systems , 1997 .

[26]  David E. Moriarty,et al.  Symbiotic Evolution of Neural Networks in Sequential Decision Tasks , 1997 .

[27]  Mitchell A. Potter,et al.  The design and analysis of a computational model of cooperative coevolution , 1997 .