Network Oscillations: Emerging Computational Principles

Despite extensive work on the behavioral and physiological correlates of brain rhythms, it is still unresolved whether they have any important function in the mammalian cerebral cortex. In particular, there is no consensus on whether there are general computational roles for network oscillations.

[1]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[2]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[3]  B. McNaughton,et al.  Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents , 1978, Brain Research.

[4]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[5]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[7]  T. Sejnowski,et al.  The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. , 1994, Learning & memory.

[8]  William R. Softky,et al.  Simple codes versus efficient codes , 1995, Current Opinion in Neurobiology.

[9]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[10]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[11]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[12]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[13]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[14]  Maria V. Sanchez-Vives,et al.  Influence of low and high frequency inputs on spike timing in visual cortical neurons. , 1997, Cerebral cortex.

[15]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[16]  T. Albright,et al.  Efficient Discrimination of Temporal Patterns by Motion-Sensitive Neurons in Primate Visual Cortex , 1998, Neuron.

[17]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[18]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[19]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[20]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[21]  Bartlett W. Mel Why Have Dendrites? A Computational Perspective , 1999 .

[22]  T. Sejnowski,et al.  The Book of Hebb , 1999, Neuron.

[23]  J. Lisman,et al.  Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. , 2000, Journal of neurophysiology.

[24]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[25]  T. Sejnowski,et al.  Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models , 2000, The Journal of Neuroscience.

[26]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[27]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[28]  T. Sejnowski,et al.  Natural patterns of activity and long-term synaptic plasticity , 2000, Current Opinion in Neurobiology.

[29]  T. Sejnowski,et al.  Model of Transient Oscillatory Synchronization in the Locust Antennal Lobe , 2001, Neuron.

[30]  Terrence J. Sejnowski,et al.  Model of Cellular and Network Mechanisms for Odor-Evoked Temporal Patterning in the Locust Antennal Lobe , 2001, Neuron.

[31]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[32]  Rajesh P. N. Rao,et al.  Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. , 2001, Journal of neurophysiology.

[33]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[34]  Tzyy-Ping Jung,et al.  Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.

[35]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[36]  Martin Suter,et al.  Small World , 2002 .

[37]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[38]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[39]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[40]  L. K. Hansen,et al.  Independent component analysis of functional MRI: what is signal and what is noise? , 2003, Current Opinion in Neurobiology.

[41]  John O'Keefe,et al.  Independent rate and temporal coding in hippocampal pyramidal cells , 2003, Nature.

[42]  Rajesh P. N. Rao,et al.  Self–organizing neural systems based on predictive learning , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Carlos D. Brody,et al.  Simple Networks for Spike-Timing-Based Computation, with Application to Olfactory Processing , 2003, Neuron.

[44]  Paul H. E. Tiesinga,et al.  Rapid Temporal Modulation of Synchrony by Competition in Cortical Interneuron Networks , 2004, Neural Computation.

[45]  Jorge V. José,et al.  Inhibitory synchrony as a mechanism for attentional gain modulation , 2004, Journal of Physiology-Paris.

[46]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[47]  Jorge V. José,et al.  Synchronization as a mechanism for attentional gain modulation , 2004, Neurocomputing.

[48]  P. Dayan,et al.  Matching storage and recall: hippocampal spike timing–dependent plasticity and phase response curves , 2005, Nature Neuroscience.

[49]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[50]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[51]  Alan Gelperin,et al.  Olfactory Computations and Network Oscillation , 2006, The Journal of Neuroscience.

[52]  Alan Gelperin,et al.  Olfactory Computations and Network Oscillations , 2006 .

[53]  M. Kahana The Cognitive Correlates of Human Brain Oscillations , 2006, The Journal of Neuroscience.