Multiarray Signal Processing: Tensor decomposition meets compressed sensing

We discuss how recently discovered techniques and tools from compressed sensing can be used in tensor decompositions, with a view towards modeling signals from multiple arrays of multiple sensors. We show that with appropriate bounds on a measure of separation between radiating sources called coherence, one could always guarantee the existence and uniqueness of a best rank-r approximation of the tensor representing the signal. We also deduce a computationally feasible variant of Kruskal's uniqueness condition, where the coherence appears as a proxy for k-rank. Problems of sparsest recovery with an infinite continuous dictionary, lowest-rank tensor representation, and blind source separation are treated in a uniform fashion. The decomposition of the measurement tensor leads to simultaneous localization and extraction of radiating sources, in an entirely deterministic manner.

[1]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[2]  J. M. Landsberg,et al.  On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..

[3]  A. Geramita,et al.  Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .

[4]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[5]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[6]  Anthony Man-Cho So,et al.  Fast and Near-Optimal Matrix Completion via Randomized Basis Pursuit , 2009, ArXiv.

[7]  James G. Oxley,et al.  Matroid theory , 1992 .

[8]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[9]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[10]  J. M. Landsberg,et al.  Kruskal's theorem , 2009, 0902.0543.

[11]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[12]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[13]  A. Defant,et al.  Tensor Norms and Operator Ideals , 2011 .

[14]  R. Schatten,et al.  A theory of cross-spaces , 1950 .

[15]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[16]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[17]  Linda Cardozo,et al.  Contrasts , 2003, BMJ : British Medical Journal.

[18]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[19]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[20]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[22]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[23]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[24]  J. Rhodes A concise proof of Kruskal’s theorem on tensor decomposition , 2009, 0901.1796.

[25]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[26]  Victor G. Kac,et al.  Some remarks on nilpotent orbits , 1980 .

[27]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[28]  F. Zak Tangents and Secants of Algebraic Varieties , 1993 .

[29]  E.J. Candes Compressive Sampling , 2022 .

[30]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[31]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[32]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[33]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[34]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[35]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[36]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[37]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[38]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[39]  P. Comon Contrasts, independent component analysis, and blind deconvolution , 2004 .