Onboard CubeSat data processing for hyperspectral detection of chemical plumes

We describe the development and implementation of plume detection algorithms under severe bandwidth and processing constraints imposed by a CubeSat architecture. In particular, two ideas will be presented: one employs onboard processing to reduce the data that is downlinked, and one employs the Sparse Matrix Transform (SMT) to speed up the onboard computation of an approximate Mahalanobis distance.

[1]  Dimitris G. Manolakis,et al.  Hyperspectral matched filter with false-alarm mitigation , 2012 .

[2]  Stefania Matteoli,et al.  Impact of Signal Contamination on the Adaptive Detection Performance of Local Hyperspectral Anomalies , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[3]  R. Cohen,et al.  Characterization of wildfire NO x emissions using MODIS fire radiative power and OMI tropospheric NO 2 columns , 2011 .

[4]  James Theiler,et al.  Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.

[5]  James Theiler,et al.  Closed-Form Detector for Solid Sub-Pixel Targets in Multivariate T-Distributed Background Clutter , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Charles A. Bouman,et al.  Fast signal analysis and decomposition on graphs using the Sparse Matrix Transform , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Fraser Goff,et al.  Passive Infrared Spectroscopic Remote Sensing of Volcanic Gases: Ground-Based Studies at White Island and Ruapehu, New Zealand, and Popocatépetl, Mexico , 2013 .

[8]  Stephen J. Young,et al.  Tracking and quantification of gaseous chemical plumes from anthropogenic emission sources within the Los Angeles Basin , 2017 .

[9]  Dimitris G. Manolakis,et al.  Using elliptically contoured distributions to model hyperspectral imaging data and generate statistically similar synthetic data , 2004, SPIE Defense + Commercial Sensing.

[10]  Charles A. Bouman,et al.  Evaluating and improving local hyperspectral anomaly detectors , 2011, 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[11]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[12]  Dirk Borghys,et al.  Target Detection Using Nonsingular Approximations for a Singular Covariance Matrix , 2012, J. Electr. Comput. Eng..

[13]  John P. Kerekes,et al.  Statistics of hyperspectral imaging data , 2001, SPIE Defense + Commercial Sensing.

[14]  Santiago Velasco-Forero,et al.  Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection in Hyperspectral Images , 2015, IEEE Journal of Selected Topics in Signal Processing.

[15]  James Theiler,et al.  A machine learning approach to hyperspectral detection of solid targets , 2018, Defense + Security.

[16]  Dimitris G. Manolakis,et al.  A taxonomy of algorithms for chemical vapor detection with hyperspectral imaging spectroscopy , 2005, SPIE Defense + Commercial Sensing.

[17]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[18]  L.L. Scharf,et al.  Adaptive matched subspace detectors and adaptive coherence estimators , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[19]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[20]  James Theiler,et al.  Transductive and matched-pair machine learning for difficult target detection problems , 2014, Defense + Security Symposium.

[21]  Xiong Liu,et al.  Ozone profile retrievals from the Ozone Monitoring Instrument , 2009 .

[22]  James Theiler,et al.  Decision boundaries in two dimensions for target detection in hyperspectral imagery. , 2009, Optics express.

[23]  E. J. Kelly Performance of an adaptive detection algorithm; rejection of unwanted signals , 1989 .

[24]  A. Hayden,et al.  Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra. , 1996, Applied optics.

[25]  Dimitris G. Manolakis,et al.  Efficient implementations of hyperspectral chemical-detection algorithms , 2013, Optics/Photonics in Security and Defence.

[26]  James Theiler,et al.  Elliptically Contoured Distributions for Anomalous Change Detection in Hyperspectral Imagery , 2010, IEEE Geoscience and Remote Sensing Letters.

[27]  James Theiler,et al.  Matched-Pair Machine Learning , 2013, Technometrics.

[28]  Antonio J. Plaza,et al.  Analysis and Optimizations of Global and Local Versions of the RX Algorithm for Anomaly Detection in Hyperspectral Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  Stefania Matteoli,et al.  Effects of signal contamination in RX detection of local hyperspectral anomalies , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[30]  Eric Truslow,et al.  The remarkable success of adaptive cosine estimator in hyperspectral target detection , 2013, Defense, Security, and Sensing.

[31]  Fred A. Kruse,et al.  Analysis of Imaging Spectrometer Data Using $N$ -Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Charles A. Bouman,et al.  Sparse matrix transform for fast projection to reduced dimension , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Jiangtao Peng,et al.  Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification , 2016, Signal Image Video Process..

[34]  James Theiler,et al.  EC-GLRT: Detecting Weak Plumes in Non-Gaussian Hyperspectral Clutter Using an Elliptically-Contoured Generalized Likelihood Ratio Test , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[35]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[36]  James Theiler,et al.  Sparse linear filters for detection and classification in hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.

[37]  Arlin J. Krueger,et al.  Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations , 2007 .

[38]  François Goudail,et al.  Influence of band selection and target estimation error on the performance of the matched filter in hyperspectral imaging. , 2011, Applied optics.

[39]  James Theiler,et al.  The incredible shrinking covariance estimator , 2012, Defense + Commercial Sensing.

[40]  Joy A. Crisp,et al.  Remote Sensing of Active Volcanism , 2000 .

[41]  Charles A. Bouman,et al.  Sparse Matrix Transform for Hyperspectral Image Processing , 2011, IEEE Journal of Selected Topics in Signal Processing.

[42]  Louis L. Scharf,et al.  The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic , 2005, IEEE Transactions on Signal Processing.

[43]  James Theiler,et al.  Effect of signal contamination in matched-filter detection of the signal on a cluttered background , 2006, IEEE Geoscience and Remote Sensing Letters.

[44]  P. K. Thapliyal,et al.  Retrieval of ozone profiles from geostationary infrared sounder observations using principal component analysis , 2016 .

[45]  Charles A. Bouman,et al.  Covariance Estimation for High Dimensional Data Vectors Using the Sparse Matrix Transform , 2008, NIPS.

[46]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[47]  F. Goff,et al.  Passive infrared spectroscopy of the eruption plume at Popocatépetl volcano, Mexico , 1998, Nature.

[48]  A. Fraser,et al.  Characterizing non-Gaussian clutter and detecting weak gaseous plumes in hyperspectral imagery , 2005 .

[49]  James Theiler,et al.  Local background estimation and the replacement target model , 2017, Defense + Security.