Creative AI Through Evolutionary Computation: Principles and Examples

The main power of artificial intelligence is not in modeling what we already know, but in creating solutions that are new. Such solutions exist in extremely large, high-dimensional, and complex search spaces. Population-based search techniques, i.e. variants of evolutionary computation, are well suited to finding them. These techniques make it possible to find creative solutions to practical problems in the real world, making creative AI through evolutionary computation the likely “next deep learning.”

[1]  Risto Miikkulainen,et al.  Sentient Ascend: AI-Based Massively Multivariate Conversion Rate Optimization , 2018, AAAI.

[2]  Young Joon Park,et al.  Coronavirus Disease Outbreak in Call Center, South Korea , 2020, Emerging infectious diseases.

[3]  John R. Koza,et al.  A Hierarchical Approach to Learning the Boolean Multiplexer Function , 1990, FOGA.

[4]  Risto Miikkulainen,et al.  Enhanced Optimization with Composite Objectives and Novelty Pulsation , 2018, GPTP.

[5]  Elliot Meyerson,et al.  From Prediction to Prescription: Evolutionary Optimization of Nonpharmaceutical Interventions in the COVID-19 Pandemic , 2020, IEEE Transactions on Evolutionary Computation.

[6]  Kenneth O. Stanley,et al.  Revising the evolutionary computation abstraction: minimal criteria novelty search , 2010, GECCO '10.

[7]  Elliot Meyerson,et al.  Flavor-cyber-agriculture: Optimization of plant metabolites in an open-source control environment through surrogate modeling , 2018, bioRxiv.

[8]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[9]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[10]  Christian L. Althaus,et al.  Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries , 2020, European Journal of Epidemiology.

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Jianjun Hu,et al.  Automated synthesis of mechanical vibration absorbers using genetic programming , 2008, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[13]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[14]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[15]  Elliot Meyerson,et al.  Effective reinforcement learning through evolutionary surrogate-assisted prescription , 2020, GECCO.

[16]  Elliot Meyerson,et al.  Discovering evolutionary stepping stones through behavior domination , 2017, GECCO.

[17]  Risto Miikkulainen,et al.  Ascend by Evolv: AI-Based Massively Multivariate Conversion Rate Optimization , 2020, AI Mag..

[18]  Anders Lyhne Christensen,et al.  Devising Effective Novelty Search Algorithms: A Comprehensive Empirical Study , 2015, GECCO.

[19]  Kalyanmoy Deb,et al.  A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables , 2017, Eur. J. Oper. Res..

[20]  Erik D. Goodman,et al.  Evolutionary design of discrete controllers for hybrid mechatronic systems , 2015, Int. J. Syst. Sci..

[21]  Stéphane Doncieux,et al.  Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study , 2012, Evolutionary Computation.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Faustino J. Gomez,et al.  When Novelty Is Not Enough , 2011, EvoApplications.

[24]  Lijun Wu,et al.  Achieving Human Parity on Automatic Chinese to English News Translation , 2018, ArXiv.

[25]  Risto Miikkulainen,et al.  Conversion rate optimization through evolutionary computation , 2017, GECCO.

[26]  Kenneth O. Stanley,et al.  Why Greatness Cannot Be Planned , 2015, Springer International Publishing.

[27]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[28]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[29]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[30]  Arielle J. Johnson,et al.  Flavor-Cyber-Agriculture: Optimization of plant metabolites in an open-source control environment through surrogate modeling , 2018 .

[31]  Kenneth O. Stanley,et al.  On the Relationship Between the OpenAI Evolution Strategy and Stochastic Gradient Descent , 2017, ArXiv.

[32]  Risto Miikkulainen,et al.  Enhanced optimization with composite objectives and novelty pulsation , 2019, GECCO.

[33]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[34]  Risto Miikkulainen,et al.  Cultural enhancement of neuroevolution , 2002 .

[35]  Tom Schaul,et al.  Rainbow: Combining Improvements in Deep Reinforcement Learning , 2017, AAAI.

[36]  Jianyun Lu,et al.  COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020 , 2020, Emerging infectious diseases.

[37]  Bart de Boer,et al.  Proceedings of the Genetic and Evolutionary Computation Conference , 2019, GECCO.