Detection of unknown gas-phase chemical plumes in hyperspectral imagery

Gas-phase chemical plumes exhibit, particularly in the infrared, distinctive emission signatures as a function of wavelength. Hyperspectral imagery can exploit this distinctiveness to detect specific chemicals, even at low concentrations, using matched filters that are tailored both the the specific structure of the chemical signature and to the statistics of the background clutter. But what if the chemical species is unknown? One can apply matched filters to a long list of candidate chemicals (or chemical mixtures), or one can treat the problem as one of anomaly detection. In this case, however, the anomalous signals of interest are not completely unknown. Gas spectra are generically sparse (absorbing or emitting at only a few wavelengths), and this property can be exploited to enhance the sensitivity of anomaly detection algorithms. This paper investigates the utility of sparse signal anomaly detection for the problem of finding plumes of gas with unknown chemistry in hyperspectral imagery.

[1]  James Theiler,et al.  Scene analysis and detection in thermal infrared remote sensing using independent component analysis , 2004, SPIE Defense + Commercial Sensing.

[2]  James Theiler,et al.  Quantitative comparison of quadratic covariance-based anomalous change detectors. , 2008, Applied optics.

[3]  James Theiler,et al.  EC-GLRT: Detecting Weak Plumes in Non-Gaussian Hyperspectral Clutter Using an Elliptically-Contoured Generalized Likelihood Ratio Test , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Brian J. Daniel,et al.  Continuum fusion methods of spectral detection , 2012 .

[5]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[6]  Amit Banerjee,et al.  Sparse feature extraction for Support Vector Data Description applications , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[7]  Dimitris G. Manolakis,et al.  Modeling hyperspectral imaging data , 2003, SPIE Defense + Commercial Sensing.

[8]  S.R. Rotman,et al.  Improved covariance matrices for point target detection in hyperspectral data , 2008, 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems.

[9]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[10]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[11]  James Theiler Formulation for min-max clairvoyant fusion based on monotonic recalibration of statistics , 2012 .

[12]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[13]  James Theiler,et al.  Elliptically Contoured Distributions for Anomalous Change Detection in Hyperspectral Imagery , 2010, IEEE Geoscience and Remote Sensing Letters.

[14]  A. Fraser,et al.  Characterizing non-Gaussian clutter and detecting weak gaseous plumes in hyperspectral imagery , 2005 .

[15]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[16]  John P. Kerekes,et al.  Development of a Web-Based Application to Evaluate Target Finding Algorithms , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Dimitris Manolakis Signal processing algorithms for hyperspectral remote sensing of chemical plumes , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[18]  Dimitris G. Manolakis,et al.  Design and evaluation of robust matched filters for chemical agent detection , 2011, Security + Defence.

[19]  James Theiler,et al.  Confusion and clairvoyance: some remarks on the composite hypothesis testing problem , 2012, Defense + Commercial Sensing.

[20]  James Theiler,et al.  Beyond the adaptive matched filter: nonlinear detectors for weak signals in high-dimensional clutter , 2007, SPIE Defense + Commercial Sensing.

[21]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[22]  A. Schaum Hyperspectral target detection using a Bayesian likelihood ratio test , 2002, Proceedings, IEEE Aerospace Conference.

[23]  James Theiler,et al.  Local principal component pursuit for nonlinear datasets , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  S Matteoli,et al.  A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.

[25]  Charles L. Bennett,et al.  Infrared hyperspectral imaging results from vapor plume experiments , 1995, Defense, Security, and Sensing.

[26]  S. Macenka,et al.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1988 .

[27]  N. Nasrabadi,et al.  Kernel RX : A new nonlinear anomaly detector , 2005 .

[28]  James Theiler,et al.  Detection of spectrally sparse anomalies in hyperspectral imagery , 2012, 2012 IEEE Southwest Symposium on Image Analysis and Interpretation.

[29]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[30]  John P. Kerekes,et al.  Statistics of hyperspectral imaging data , 2001, SPIE Defense + Commercial Sensing.

[31]  Joseph Meola,et al.  Airborne hyperspectral detection of small changes. , 2008, Applied optics.

[32]  Stanley R. Rotman,et al.  Anomaly detection in non-stationary backgrounds , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[33]  Steven M. Adler-Golden Improved hyperspectral anomaly detection in heavy-tailed backgrounds , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[34]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[35]  James Theiler,et al.  Improved matched-filter detection techniques , 1999, Optics & Photonics.

[36]  James Theiler,et al.  Sparse linear filters for detection and classification in hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.

[37]  C. Gittins,et al.  Detection and characterization of chemical vapor fugitive emissions by nonlinear optimal estimation: theory and simulation. , 2009, Applied optics.

[38]  Don R. Hush,et al.  Statistics for characterizing data on the periphery , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[39]  Tsutomu Shimada,et al.  Comparisons between hyperspectral passive and multispectral active sensor measurements , 2002, SPIE Defense + Commercial Sensing.

[40]  Charles A. Bouman,et al.  Evaluating and improving local hyperspectral anomaly detectors , 2011, 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[41]  Peter Bajorski Min-max detection fusion for hyperspectral images , 2011, 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[42]  A. Hayden,et al.  Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra. , 1996, Applied optics.

[43]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[44]  Eric Allman,et al.  Hyperspectral change detection in high clutter using elliptically contoured distributions , 2007, SPIE Defense + Commercial Sensing.

[45]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[46]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[47]  Dimitris G. Manolakis,et al.  A taxonomy of algorithms for chemical vapor detection with hyperspectral imaging spectroscopy , 2005, SPIE Defense + Commercial Sensing.

[48]  Alan Schaum,et al.  Continuum fusion: a theory of inference, with applications to hyperspectral detection. , 2010, Optics express.

[49]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[50]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..