Frames from groups: Generalized bounds and dihedral groups

The problem of designing low coherence matrices and low-correlation frames arises in a variety of fields, including compressed sensing, MIMO communications and quantum measurements. The challenge is that one must control the (n over 2) pairwise inner products of the columns of the matrix. In this paper, we follow the group code approach of David Slepian [1], which constructs frames using unitary group representations and which in general reduces the number of distinct inner products to n-1. We examine representations of cyclic groups as well as generalized dihedral groups, and we expand upon previous results which bound the coherence of the resulting frames.

[1]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[2]  Georgios B. Giannakis,et al.  Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.

[3]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[4]  Babak Hassibi,et al.  Frames, group codes, and subgroups of (Z/pZ)× , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[5]  Jelena Kovačević,et al.  Life Beyond Bases: The Advent of Frames , 2006 .

[6]  D. Slepian Group codes for the Gaussian channel , 1968 .

[7]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[8]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[9]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[10]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[11]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[13]  Robert W. Heath,et al.  Linear dispersion codes for MIMO systems based on frame theory , 2002, IEEE Trans. Signal Process..

[14]  Robert W. Heath,et al.  Space-time signaling and frame theory , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[15]  S. Waldron,et al.  Tight Frames and Their Symmetries , 2004 .

[16]  David S. Slepian,et al.  Group codes for the Gaussian channel (Abstr.) , 1968, IEEE Trans. Inf. Theory.

[17]  Hugh F. Jones Groups, representations, and physics , 1990 .

[18]  T. Strohmer Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.

[19]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[20]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[21]  Yonina C. Eldar,et al.  Optimal tight frames and quantum measurement , 2002, IEEE Trans. Inf. Theory.

[22]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[23]  Peter G. Casazza,et al.  Duality Principles in Frame Theory , 2004 .

[24]  Babak Hassibi,et al.  Representation theory for high-rate multiple-antenna code design , 2001, IEEE Trans. Inf. Theory.

[25]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[26]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[27]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[28]  Robert W. Heath,et al.  Designing structured tight frames via an alternating projection method , 2005, IEEE Transactions on Information Theory.