Improved step size adaptation for the MO-CMA-ES

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) is an evolutionary algorithm for continuous vector-valued optimization. It combines indicator-based selection based on the contributing hypervolume with the efficient strategy parameter adaptation of the elitist covariance matrix adaptation evolution strategy (CMA-ES). Step sizes (i.e., mutation strengths) are adapted on individual-level using an improved implementation of the 1/5-th success rule. In the original MO-CMA-ES, a mutation is regarded as successful if the offspring ranks better than its parent in the elitist, rank-based selection procedure. In contrast, we propose to regard a mutation as successful if the offspring is selected into the next parental population. This criterion is easier to implement and reduces the computational complexity of the MO-CMA-ES, in particular of its steady-state variant. The new step size adaptation improves the performance of the MO-CMA-ES as shown empirically using a large set of benchmark functions. The new update scheme in general leads to larger step sizes and thereby counteracts premature convergence. The experiments comprise the first evaluation of the MO-CMA-ES for problems with more than two objectives.

[1]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[2]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[3]  John E. Savage,et al.  The Complexity of Computing , 1976 .

[4]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[5]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[6]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[7]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[11]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[12]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[13]  Petros Koumoutsakos,et al.  Learning probability distributions in continuous evolutionary algorithms – a comparative review , 2004, Natural Computing.

[14]  R. Lyndon While,et al.  A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume , 2005, EMO.

[15]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[16]  Christian Igel,et al.  A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies , 2006, GECCO.

[17]  Christian Igel,et al.  Steady-State Selection and Efficient Covariance Matrix Update in the Multi-objective CMA-ES , 2007, EMO.

[18]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[19]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[20]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[21]  Nicola Beume,et al.  Scalarization versus indicator-based selection in multi-objective CMA evolution strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[22]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[23]  N. Hansen,et al.  Recombination for Learning Strategy Parameters in the MO-CMA-ES , 2009, EMO.

[24]  C. Papadimitriou,et al.  The Complexity of Computing a , 2009 .

[25]  Christian Igel,et al.  Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.

[26]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[27]  Tobias Friedrich,et al.  Approximating the least hypervolume contributor: NP-hard in general, but fast in practice , 2008, Theor. Comput. Sci..