Uncrowded hypervolume improvement: COMO-CMA-ES and the sofomore framework

We present a framework to build a multiobjective algorithm from single-objective ones. This framework addresses the p × n-dimensional problem of finding p solutions in an n-dimensional search space, maximizing an indicator by dynamic subspace optimization. Each single-objective algorithm optimizes the indicator function given p - 1 fixed solutions. Crucially, dominated solutions minimize their distance to the empirical Pareto front defined by these p - 1 solutions. We instantiate the framework with CMA-ES as single-objective optimizer. The new algorithm, COMO-CMA-ES, is empirically shown to converge linearly on bi-objective convex-quadratic problems and is compared to MO-CMA-ES, NSGA-II and SMS-EMOA.

[1]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[2]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[3]  Heike Trautmann,et al.  Online convergence detection for evolutionary multi-objective algorithms revisited , 2010, IEEE Congress on Evolutionary Computation.

[4]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.

[5]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[6]  Anne Auger,et al.  Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..

[7]  Frank Neumann,et al.  Set-based multi-objective optimization, indicators, and deteriorative cycles , 2010, GECCO '10.

[8]  Thomas Bäck,et al.  Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient , 2019, Swarm Evol. Comput..

[9]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[10]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[11]  Oswin Krause,et al.  Qualitative and Quantitative Assessment of Step Size Adaptation Rules , 2017, FOGA '17.

[12]  Sébastien Bubeck,et al.  Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems , 2012, Found. Trends Mach. Learn..

[13]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[14]  Anne Auger,et al.  On Bi-Objective convex-quadratic problems , 2019, EMO.

[15]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[16]  Andy J. Keane,et al.  Statistical Improvement Criteria for Use in Multiobjective Design Optimization , 2006 .

[17]  Wolfgang Ponweiser,et al.  Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted -Metric Selection , 2008, PPSN.

[18]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[19]  M. Emmerich,et al.  The computation of the expected improvement in dominated hypervolume of Pareto front approximations , 2008 .

[20]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[21]  Christian Igel,et al.  Improved step size adaptation for the MO-CMA-ES , 2010, GECCO '10.

[22]  Nikolaus Hansen,et al.  Object‐Oriented Programming of Optimizers – Examples in Scilab , 2013 .

[23]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[24]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Wolfgang Ponweiser,et al.  On Expected-Improvement Criteria for Model-based Multi-objective Optimization , 2010, PPSN.

[27]  Hao Wang,et al.  The Set-Based Hypervolume Newton Method for Bi-Objective Optimization , 2020, IEEE Transactions on Cybernetics.

[28]  Tobias Friedrich,et al.  Convergence of hypervolume-based archiving algorithms I: effectiveness , 2011, GECCO '11.

[29]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[30]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .