A Fitness Granulation Approach for Large-Scale Structural Design Optimization

The complexity of large-scale mechanical optimization problems is partially due to the presence of high-dimensional design variables, the nature of the design variables, and the high computational cost of the finite element simulations needed to evaluate the fitness of candidate solutions. Evolutionary algorithms are ruled by competitive games of survival and not merely by absolute measures of fitness. They can also exploit the robustness of evolution against uncertainties in the fitness function evaluations. This chapter takes up the complexity challenge of mechanical optimization problems by proposing a new fitness granulation approach that attempts to cope with several difficulties of fitness approximation methods that have been reported in the specialized literature. The approach is based on adaptive fuzzy fitness granulation having as its main aim to strike a balance between the accuracy and the utility of the computations. The adaptation algorithm adjusts the number and size of the granules according to the perceived performance and level of convergence attained. Experimental results show that the proposed method accelerates the convergence towards solutions when compared to the performance of other, more popular approaches. This suggests its applicability to other complex finite element-based engineering design problems.

[1]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[2]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[3]  Martin Pelikan,et al.  Fitness Inheritance in the Bayesian Optimization Algorithm , 2004, GECCO.

[4]  B. Julstrom,et al.  Design of vector quantization codebooks using a genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[5]  Min-Jea Tahk,et al.  Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks , 2003 .

[6]  Bernard De Baets,et al.  Is Fitness Inheritance Useful for Real-World Applications? , 2003, EMO.

[7]  A. Preumont,et al.  Finite element modelling of piezoelectric active structures , 2001 .

[8]  Robert E. Smith,et al.  Fitness inheritance in genetic algorithms , 1995, SAC '95.

[9]  Carlos A. Coello Coello,et al.  A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[10]  Javad Dargahi,et al.  Design and development of a new piezoelectric linear Inchworm actuator , 2005 .

[11]  Mehrdad Salami,et al.  A fast evaluation strategy for evolutionary algorithms , 2003, Appl. Soft Comput..

[12]  T. Ray,et al.  A framework for optimization using approximate functions , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[13]  Bernhard Sendhoff,et al.  Trusted Evolutionary Algorithm , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[14]  L. Josefsson,et al.  Conformal array antenna theory and design , 2006 .

[15]  Karl-Heinrich Grote,et al.  Springer handbook of mechanical engineering , 2009 .

[16]  Yew-Soon Ong,et al.  Curse and Blessing of Uncertainty in Evolutionary Algorithm Using Approximation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[17]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[18]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[19]  Manolis Papadrakakis,et al.  Evolutionary Algorithms applied to Structural Optimization Problems , 2000 .

[20]  Tapabrata Ray,et al.  C-PSA: Constrained Pareto simulated annealing for constrained multi-objective optimization , 2010, Inf. Sci..

[21]  Naser Pariz,et al.  Adaptive fuzzy fitness granulation for evolutionary optimization , 2008, Int. J. Approx. Reason..

[22]  Jaroslav Mackerle,et al.  Smart materials and structures - a finite element approach - an addendum : a bibliography (1997-2002) (vol 6, pg 293, 1998) , 2003 .

[23]  Efrn Mezura-Montes,et al.  Constraint-Handling in Evolutionary Optimization , 2009 .

[24]  Carlos A. Coello Coello,et al.  Evolutionary hidden information detection by granulation-based fitness approximation , 2010, Appl. Soft Comput..

[25]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[26]  Tapabrata Ray,et al.  On the use of computational intelligence in the optimal shape control of functionally graded smart plates , 2004 .

[27]  Hajime Kita,et al.  Optimization of Noisy Fitness Functions by Means of Genetic Algorithms Using History of Search , 2000, PPSN.

[28]  M. Walker,et al.  A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis , 2003 .

[29]  Michael Krommer,et al.  Dynamic shape control of sub-sections of moderately thick beams , 2005 .

[30]  Christine A. Shoemaker,et al.  Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.

[31]  Carlos A. Coello Coello,et al.  A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization , 2010 .

[32]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[33]  J. Dias Rodrigues,et al.  The application of genetic algorithms for shape control with piezoelectric patches—an experimental comparison , 2004 .

[34]  Mohammad R. Akbarzadeh-Totonchi,et al.  Genetic Quantum Algorithm for Voltage and Pattern Design of Piezoelectric Actuator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[35]  Bernhard Sendhoff,et al.  On Evolutionary Optimization with Approximate Fitness Functions , 2000, GECCO.

[36]  Liyong Tong,et al.  Shape control of smart composite plate with non-rectangular piezoelectric actuators , 2004 .

[37]  Hamid Bahai,et al.  Modification of dynamic characteristics of FGM plates with integrated piezoelectric layers using first‐ and second‐order approximations , 2007 .

[38]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[39]  Carlos A. Coello Coello,et al.  Design of a motorcycle frame using neuroacceleration strategies in MOEAs , 2009, J. Heuristics.

[40]  Chi-Keong Goh,et al.  Computational Intelligence in Expensive Optimization Problems , 2010 .

[41]  Khaled Rasheed,et al.  A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms , 2010 .

[42]  Gary G. Yen,et al.  Constraint Handling in Multiobjective Evolutionary Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[43]  Mithat Idemen IEEE Press Series on Electromagnetic Wave Theory , 2011 .

[44]  Afonso C. C. Lemonge,et al.  A similarity-based surrogate model for enhanced performance in genetic algorithms , 2009 .

[45]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[46]  P. Marcal,et al.  Introduction to the Finite-Element Method , 1973 .

[47]  Naser Pariz,et al.  A novel general framework for evolutionary optimization: Adaptive fuzzy fitness granulation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[48]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[49]  Carlos A. Coello Coello,et al.  Fitness inheritance in multi-objective particle swarm optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[50]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[51]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[52]  Mohammad-R. Akbarzadeh-T,et al.  Multi-objective meta level soft computing-based evolutionary structural design , 2007, J. Frankl. Inst..

[53]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[54]  Jürgen Branke,et al.  Faster convergence by means of fitness estimation , 2005, Soft Comput..

[55]  Sarp Adali,et al.  Optimization of composite plates with piezoelectric stiffener-actuators under in-plane compressive loads , 2005 .

[56]  Yukio Nakajima,et al.  Optimization of Construction of Tire Reinforcement by Genetic Algorithm , 2004 .

[57]  Thomas Philip Runarsson,et al.  Constrained Evolutionary Optimization by Approximate Ranking and Surrogate Models , 2004, PPSN.

[58]  Jürgen Branke,et al.  Efficient fitness estimation in noisy environments , 2001 .

[59]  M. Giger,et al.  Development of CFRP racing motorcycle rims using a heuristic evolutionary algorithm approach , 2005 .

[60]  Alain Ratle,et al.  Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation , 1998, PPSN.

[61]  Sung-Bae Cho,et al.  An efficient genetic algorithm with less fitness evaluation by clustering , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[62]  Jin-Chein Lin,et al.  Adaptive control of a composite cantilever beam with piezoelectric damping-modal actuators/sensors , 2005 .

[63]  Carlos A. Coello Coello,et al.  Auto-tuning fuzzy granulation for evolutionary optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).